
An Implementation of the
ALICE TRD

Online Reconstruction

Diplomarbeit

Goethe-Universität Frankfurt am Main
Fachbereich Physik

Institut für Kernphysik

Theodor B. Rascanu

September 2010

Zusammenfassung

In dieser Arbeit wird die Implementierung der Echtzeit-Rekonstruk-
tion, Kalibrierung und Darstellung der Daten des ALICE Transition Ra-
diation Detektors vorgestellt.

Die Rekonstruktion wird auf dem High-Level Trigger, der dritten
Stufe des Triggersystems von ALICE, durchgeführt und erlaubt die On-
line-Kalibrierung und Darstellung der eingehenden Daten. Zusätzlich
kann der HLT die Speicherung der aufgenommen Daten steuern, so dass
nur physikalisch interessante Events gespeichert werden.

Für diese Rekonstruktion, als auch für die Kalibrierung, werden die
bereits vorhandenen Offline-Algorithmen verwendet. Dazu musste die
Nahtstelle zwischen dem HLT und diesen Offline-Algorithmen implemen-
tiert werden. Um allerdings die notwendige Geschwindigkeit von 2000
Hz in Proton-Proton-Kollisionen, und 200 Hz in Blei-Blei-Kollisionen er-
reichen zu können, mussten die Algorithmen beschleunigt werden. Um
die Engpässe zu finden, wurden die Algorithmen mit speziellen Tools
analysiert, um daraufhin betreffenden Kode durch eine Neuimplemen-
tierung zu ersetzen oder aber während der Online-Rekonstruktion zu
überspringen. Um sicherzustellen, dass dadurch die Qualität nicht zu
stark gemindert wird, wurde diese während der Implementierung über-
wacht.

Abstract

This thesis presents the implementation of the online reconstruction,
calibration and monitoring of the data of the Transition Radiation De-
tector of ALICE.

This reconstruction is performed on the High Level Trigger, the third
level of the ALICE trigger system, and enables online calibration and
monitoring of the incoming data. Additionally, the HLT can steer the
data storage, such that only physical interesting events are saved.

The online reconstruction, as well as the calibration, makes use of
the existing offline algorithms. Therefore, interfaces between the HLT
and these offline algorithms were implemented. For being able to reach
the speed of 2000 Hz in proton-proton collisions, and 200 Hz in lead-
lead collisions, the algorithms had to be accelerated. Bottlenecks were
tracked down using dedicated tools, and respective code was either re-
implemented or it is being skipped during the online reconstruction. The
quality of the output data was monitored throughout the implementa-
tion, to assure that it is not being cut too much.

CONTENTS VII

Contents
1 Preface 1

2 Introduction 3
2.1 The Pedigree of Particle Physics . 3
2.2 The Standard Model of Particle Physics 4
2.3 The Quark Gluon Plasma . 6
2.4 The Large Hadron Collider . 8
2.5 A Large Ion Collider Experiment (ALICE) 9

2.5.1 ALICE-Detectors . 9
2.5.2 ECS Control . 11
2.5.3 ALICE-Software . 12
2.5.4 HLT Software Trigger . 13

3 The Transition Radiation Detector 15
3.1 Working Principles of the TRD . 17

4 Triggers 21
4.1 Hardware triggers (L0, L1, L2) . 21
4.2 High Level Trigger . 21

4.2.1 HLT-DAQ interface . 22
4.2.2 Event Processing . 24
4.2.3 Physical Layout . 24
4.2.4 Data Transportation Framework 25
4.2.5 Modular Data Processing . 26
4.2.6 ECS-HLT Interface . 26

5 The Development of HLT::TRD 29
5.1 About Profiling . 29
5.2 Test Setup . 32
5.3 Offline Reconstruction . 34

5.3.1 Raw Reader . 35
5.3.2 Cluster Finder . 37
5.3.3 Track Finder . 44

5.4 Online Reconstruction . 50
5.4.1 Data Exchange between Components 51
5.4.2 Reconstruction Components 54
5.4.3 Monitoring Components . 58
5.4.4 Histogram Merging Component 60
5.4.5 Calibration Components . 61
5.4.6 Trigger Components . 63
5.4.7 Component Placement . 64
5.4.8 Offline Compatibility Components 65
5.4.9 Summary of the Components Developed 66

VIII CONTENTS

6 Quality Assurance 67
6.1 Pre-requirements . 68
6.2 QA based on Simulated Data . 71
6.3 QA based on real data . 81

7 Summary 89

8 Appendix 91
8.1 Memory Management on Modern Computers 91

8.1.1 Static and Dynamic Memory Allocation 91
8.1.2 Data Alignment . 93
8.1.3 Virtual Memory . 93
8.1.4 Inter-Process Communication 94

List of Figures 95

List of Tables 96

Listings 96

References 97

1

1 Preface
Ever since people asked why nature is as it is, and tried to find laws describing
their observation, the understanding of how nature behaves evolved. One such law,
for example, describes how apples fall onto Newton’s head. Some other describe
how planets en-circulate the sun. Very soon it was realised that these laws have
a lot in common, and actually describe the same fundamental force from different
perspectives, we call this force "gravity". There are some other such fundamental
forces, each having its own way of behaving. We call those other forces: electro-
magnetic, weak and strong force. Many questions have been answered up to now,
but as it is very often each answer comes with a price tag labelled in the currency
"new more fundamental question". All physics fields like Astrophysics, Solid State
Physics, or Nuclear Physics have different perspectives on our universe, and thus
they can observe different aspects of the fundamental forces.

The achievements in one field can lead to unveilings in others. Amusingly this
mutual impact is very strong between two seemingly very distant fields: astrophysics
and nuclear physics. In fact both are not that distant at all when, for example,
looking at the goals of current nuclear physics experiments:

• What were the properties of the very early universe?

• Can our models explain the origin of mass?

• What is dark energy?

• Can we explain the evolution of our universe?

These questions are obviously also very fundamental astronomical questions; an-
swering all of those questions is the goal of the experiments built near Geneva at
CERN.1

Each field has its own very special methods of teasing out more knowledge from
nature’s seemingly bottomless reservoir. The way nuclear physics is today trying
to endeavour its sub microscopic view of the world was first travelled by Ernest
Rutherford with his scattering experiment. From his experiment we know that the
naming of the so called atom was premature: Since then nuclear physicists are
engaged in finding the right description of the substructure of something we call
“indivisible”.

1The first question is the search of the characteristics of the Quark-Gluon-Plasma, which we
shall encounter again later; this will be addressed by ALICE. The second is the search after the
Higgs Boson; ATLAS and CMS will try to find this last missing particle of the Standard Model.
The question about the nature of dark energy is assigned to CMS only, and last but not least LHCb
will try to find out more about the CP-violation of the weak nuclear force, which is important for
the asymmetry of matter and antimatter.

2

3

2 Introduction

2.1 The Pedigree of Particle Physics
The idea that it is impossible to divide matter endlessly was a concept by early
Greek philosophers. Thus it was thought that all matter is built out of smallest
components, which they called ατoµoς. Later, chemists of the 17th and 18th century
showed that certain substances cannot be further divided by chemical methods.
Those substances where called chemical elements and it was assumed that these
elements where built out of atoms.

The idea of indivisible atoms had soon to be revised. First signs were the great
number of elements and the periodicity of their characteristics. This became clearer
as the first steps of the emerging nuclear physics were taken:

William Conrad Röntgen’s discovery in 1895, the X-rays, led to an extensive
search of other radiation sources. Just a year later Henri Becquerel discovered the
radiation of uranium salts by their peculiarity of exposing photographic plates in the
dark. In 1898 Marie Curie was able to show that this radiation must be an attribute
of the uranium atoms themselves and cannot be explained by chemical reactions.
She called this spontaneous radiation of the material “radioactivity”. Due to the
high radiation, Marie and her husband Pierre found two more elements later that
year, Polonium and Radium.

Trying to bring some systematics into the different types of radiation, they were
named alphabetically in Greek in the order of decreasing interaction with matter.
In 1909 Rutherford’s experiment of scattered alpha particles on a gold foil, led to
the conclusion that atoms consist of a small positive charged nucleus surrounded
by negative electrons. Just two years later Niels Bohr joined the knowledge of
quantum mechanics and the outcome of Rutherford’s experiment into his model of
atomic structure.

The restriction to the distinct energies alpha particles have, being emitted by
the sources, let soon arise ideas about how to accelerate those charged particles for
further experiments. The particle accelerator was invented.

As in 1932 the neutron was found, the nucleus was complete and together with
the prediction of the neutrino in 1930 all observations could be well described. This
idyllic atmosphere soon vanished in 1937 as a new particle was detected coming
with cosmic rays, the muon. The surprise about this unexpected particle, which
was found to be like an electron but heavier, is best summarised in I. I. Rabi’s
comment: “Who ordered that?”

Until the late 1950’s literally hundreds of new particles where found in scattering
experiments and could be arranged in two groups: leptons and hadrons. Because of
the large number of hadrons the situation was comparable to the situation at the
end of the 19th century; where there were simply too many chemical elements for
these to be truly called elementary. It was the beginning of the 1960’s when it was
finally clear that the hadrons, the particles forming the atoms nuclei, could not be
elementary either and had to be built up out of even smaller components, which then
were called partons. However an unambiguous understanding of their nature was
missing until the quark model proposed by Murray Gell-Mann and George Zweig
became commonly accepted in 1969 as the predicted Ω− particle was found.

4 2.2 The Standard Model of Particle Physics

This brought a high degree of tidiness into the overwhelming big “particle zoo”
of the 1960’s. Since then this theory evolved into what we today call the Standard
Model. [PER, KBK, DEM]

2.2 The Standard Model of Particle Physics
The Standard Model is a theory that describes the known particles and their in-
teractions. In this theory all matter is composed out of quarks and leptons. The
possible interactions among particles are given by the fundamental forces, of which
this theory leaves out the gravity, and are described as an exchange of force medi-
ating particles.

Quarks and leptons are fermions respecting the Pauli Principle, having half spin
and obeying the Fermi-Dirac-statistic, whereas force mediating particles are bosons
not respecting Pauli’s Principle, having integer spin and obeying the Bose-Einstein-
statistic. The Standard Model includes 12 fermions, 12 anti-fermions and 12 known
force mediating particles, which are also called gauge bosons. One more boson is
predicted and would complete the theory: the Higgs boson.

There are six quarks and six leptons and equally many antiparticles. Quarks
posses all known charges, and interact thus via all known forces, which makes them
unique in that way. They have a mass, they have electric charge and as all other
particles they carry weak charge. In addition to that quarks also carry another
type of charge, the colour charge. Unlike electric and weak charge, of which there
are two forms (plus and minus), mass has only one form, while colour charge has
six: red, green, blue, anti-red, anti-green and anti-blue. Due to the so called colour
confinement (or just confinement) quarks are bound together to form colour-neutral
composite particles. There are two known quark configurations, although more are
imaginable: a quark and an anti-quark forming a meson, while three quarks form
a baryon. These colourful names of the colour charge were chosen because of the
following similarity: In principle one can think of the classical colour theory (in
its additive form) where anti-red would be cyan, anti-green magenta and anti-blue
would be yellow; the confinement would demand composite particles to be white.

The remaining six fermions, the leptons, all miss the colour charge, while the
three neutrinos also miss the electric charge, which leaves them to interact solely by
weak interaction2, hence making them hardly detectable. Fermions are grouped in
three generations, which are sorted by increasing mass. Second and third generation
charged particles decay with very short half lives, making all visible matter to consist
of only first generation charged particles and the very weakly interacting neutrinos
of all generations. Table 1 summarises the properties of the fermions.

When two particles approach each other, the force between those is described in
the Standard Model as an exchange of virtual gauge bosons. Each charge produces
a correspondent fundamental force, and each force has its gauge bosons to mediate
it. The higher the absolute amount of charge, the higher the force and the higher
the coupling of the gauge boson to the particle. The bosons have to put back the
distance between the interacting particles, by propagating through space. The more

2remember, gravitation is not included and is anyhow very weak

2 INTRODUCTION 5

Generation Charges
1 2 3 Mass [eV/c2] Electric [e] (z) Colour Weak [g] (Tz)

Quarks u c t 2.55 M 1.17 G 171 G 2/3 r,g,b 1/2
d s b 5.04 M 105 M 4.2 G -1/3 r,g,b -1/2

Leptons e− µ− τ− 511 k 106 M 1.78 G -1 0 -1/2
ν1 ν2 ν3 ≈ 0 0 0 1/2

Table 1: Eigenstates of the fermions according to the Standard Model [PDG]. The mass is shown
for the mass eigenstates, and the weak charge is shown for the left handed weak eigen-
states. The weak eigenstates of the neutrinos νe, νµ and ντ are linear combinations of
the mass eigenstates ν1, ν2 and ν3, and the weak eigenstates of the quarks d’, s’ and b’
are linear combinations of the mass eigenstates d, s and b. For the charged leptons the
mass and weak eigenstates coincide. Only for the W± bosons does the indicated weak
charge directly show the coupling strength. The Z0 coupling is given by z − Tzx, with
x = sin2 ΘW ≈ 0.23, where ΘW is the Weinberg angle.

Interaction Couples Gauge Mass El. Col. Weak eff. rel. eff.
to Boson [GeV/c2] [e] [g] Range Strength

Strong colour 8 gluons 0 0 yes 0 10−15 1
Electromg. electric photon 0 0 0 0 ∞ 10−2

Weak weak W±, Z0 80, 91 ±1, 0 0 ±1, 0 10−18 10−14

Gravitation mass graviton ? 0 0 0 0 ∞ 10−38

Table 2: The known interactions and their gauge bosons [PER]. Each gluon has one of the
following colour combinations: rḡ, rb̄, gr̄, gb̄, br̄, bḡ, rr̄ − gḡ, rr̄ + gḡ − bb̄.

massive the boson the shorter the distance it can propagate. Both, the coupling and
the propagation contribute to the effective strength of the force.

The strongest force is the so called strong nuclear force; it’s mediated by the
gluons between colour charged particles. There are eight gluons, each carrying
another colour charge. These are the particles which bind colour charge carrying
particles together, even themselves, thus their suggestive name. The next strongest
fundamental force is the electromagnetic force, which is mediated by the (electrically
neutral) photon between electrical charged particles. Since there is a strong nuclear
force, we also know of a weak nuclear force: this is mediated by the massive W+,
W− and Z0 bosons between all fermions. This force is the only one to not produce
bound compounds, and can thus only be sensed by the transitions it generates, which
otherwise would be forbidden; e.g. the beta decay of unstable isotopes. By far the
weakest fundamental force is the gravity, which is why it can be neglected in most
cases. Though there are some very extreme cases, where it becomes necessary to
have gravity included (think of neutron stars); this is the barrier of today’s Standard
Model. There are ambitions to also include gravity into the theory, thus implying the
existence of another gauge boson, the graviton. Table 2 summarises the properties
of the bosons. [PER, KBK]

6 2.3 The Quark Gluon Plasma

Figure 1: Phase diagram of quarks and gluons. In normal matter quarks and gluons are bound
in hadrons, which compose the nuclei, at density ρ0 and temperature 0. Also shown
are the traces of the matter during heavy ion collisions in current accelerators and the
early universe. The transition was about 1µs after the Big Bang. In the core of neutron
stars quark gluon plasma might exist at low temperatures already due to the immense
density. [TUK]

2.3 The Quark Gluon Plasma
It is expected that moving towards very high densities or temperatures nuclear
matter undergoes a phase transition lifting the confinement of the strong interacting
quarks and gluons, making them free particles. This phase of matter is called the
Quark-Gluon-Plasma (QGP). At small temperatures, ten times the density of nuclei
is needed to approach nucleons so much that their wave functions overlap, thus
losing their identity and dissolving into a big nuclear lump containing free quarks
and gluons. The interior of neutron stars is thought to be such big nuclear lump. On
the other hand right after the Big Bang only a low3 net baryon density was present;
but, due to the high temperatures, a high energy density was available. Thus during
its first micro second our universe was in a Quark-Gluon-Plasma state. When the
universe had expanded enough it cooled down to less than 200 MeV and quarks and
gluons combined to hadrons (Figure 1).

In heavy ion collisions similar conditions are generated. Being propelled by
the accelerator to great energies, the colliding Lorentz compressed nuclei produce
high densities and high temperatures. Due to its high pressure the resulting QGP is
expanding into a fireball bringing quarks and gluons back to their confinement even-
tually. While this fireball expands and cools down, inelastic interactions between
hadrons cease out thus fixing the particle composition. This stage is called “chem-
ical freeze out” and is followed by the “thermal freeze out” where also the elastic
interactions come to an end, fixing also the momentum distribution [ORS].

3The low net baryon density is due to the fact the in the first instances our universe had as
much matter as anti-matter. Later this balance lost its equilibrium due to the CP-violation in the
weak interaction.

2 INTRODUCTION 7

Due to the very short time the QGP state is sustained, it is not straight forward
to get a clear evidence of its existence. Thus a series of different observables has
to be considered. All observables are monitored depending on the centrality, as
the formation of the QGP should be highly dependent on the number of binary
collisions. Additionally the observables should be compared between collisions of
pp, pA and AA4 at comparable collision energy per nucleon.

Kinematic Probes

The global experimental observables average transverse momentum 〈pT 〉, hadron
rapidity distribution dN/dy and transverse energy distribution dET/dy are directly
connected to the thermodynamic characteristics temperature, entropy density and
energy density of the fireball, which forms at the collision. At the phase transition
towards a QGP a sudden rise of the degrees of freedom should be visible in the
change of energy density and entropy as function of temperature.

Another observable is the collective flow, which forms due to the pressure gradi-
ent inside the fireball. The formation of a QGP should significantly decrease the
flow.

Jet Quenching

When two partons hit head on, they deflect each other back on back out of the
fireball. Due to the confinement the partons need to hadronise and form thus two
jets. In case a QGP forms, the partons should experience an energy loss due to
the strong interaction with the colour charged medium. This should alter the jet
structure, and multi particle correlations.

Strangeness Enhancement

Due to strangeness conservation, strange particles can only be produced in pairs.
The threshold energy needed is given by the mass of the produced pair. Under nor-
mal circumstances the lightest strange particle pair consists of two kaons. However,
inside a QGP where the confinement is lifted, strange quarks pairs can be produces
directly, lowering the threshold considerably. Thus an enhancement of multi-strange
hyperons is expected.

Quarkonium Suppression/Enhancement

There are diverging expectations on how the production of the charmonium and
bottomium states changes at the phase transition:

Due to the unbound colour charge of the medium, it is expected that Debye
screening should lead to a suppression of the quarkonium states. The suppression
of individual states should be depending on the distance of the quark pairs and the
temperature of the medium.

Other theories, however, predict an enhancement due to statistical recombination
inside the QGP or at the freeze out.

4Whereas “pp” mean proton-proton collision and “AA” heavy nuclei collisions, in our case lead

8 2.4 The Large Hadron Collider

LINAC 2

Gran Sasso

North Area

LINAC 3
Ions

East Area

TI2
TI8

TT41TT40

CTF3

TT2

TT10

TT60

e–

ALICE

ATLAS

LHCb

CMS

CNGS

neutrinos

neutrons

p
p

SPS

ISOLDEBOOSTER

AD

LEIR

n-ToF

LHC

PS

Figure 2: The CERN accelerator complex. Protons are starting their way at LINAC 2 and lead
ions at LINAC 3. [CER]

Electromagnetic Probes

Leptons and photons are probes for the earliest moments of the interaction, since
they are not influenced by the strong force they can leave the fireball much less
obstructed than hadrons. Thus information about the characteristics of the medium
before the freeze out can be gained. [QGP1, QGP2, QGP3, JPS, JSN]

2.4 The Large Hadron Collider
The Large Hadron Collider is a ring accelerator at the European Organisation of
Nuclear Research (commonly called CERN) situated near Geneva, at the border of
Switzerland and France. In 2001 the construction of the LHC started, replacing
the predecessor accelerator LEP (Large Electron-Positron Collider) in its 27 km
circumference tunnel.

The LHC consists of 1392 superconducting dipole magnets guiding two particle
beams of opposing directions on their way through the tunnel. The two beams,
which are 20 cm apart, are focused by 392 superconducting quadrupole magnets to
a size of only 16µm in transverse direction. The magnets are cooled to 1.9 K, which
is well below the transition temperature of the NbTi alloy windings in the magnets,
to maximise the field strength up to the needed 8.3 Tesla required for the highest
particle energies and for preserving the Helium in its superfluid phase.

Before being injected into the LHC particles are successively pre-accelerated in an
accelerator cascade starting at the linear accelerator LINAC 2 / LINAC 35 followed
by the accelerator rings PSB / LEIR5, PS and SPS (Figure 2). Once in the LHC

5The first mentioned accelerator is used for protons exclusively, the second mentioned is for
lead ions.

2 INTRODUCTION 9

Parameter Value
Total length 26.659 km
Minimal radius 2805 m
Momentum at injection per proton 450 GeV/c2

Maximal momentum per proton 7 TeV/c2

Dipole field at 450 GeV/c2 0.535 Tesla
Dipole field at 7 TeV/c2 8.33 Tesla
Revolution frequency 11.245 kHz
Nucleons per bunch 1.15 · 1011 / 108

Bunches per beam 2808 / 592
Transverse beam size at interaction 16.7µm
Longitudinal bunch size 7.6 cm
Luminosity 1034 cm−2s−1 / 1027 cm−2s−1

Table 3: Some parameters of the LHC. [LHCDR, CER]

particles are further accelerated up to the peak energy of 7 TeV in proton-proton
collisions and 2.76 TeV per nucleon in lead-lead collision.

The actual layout of the LHC is not a perfect circle, but includes eight 528 m
straights and eight arcs. In the middle of four of the straights the two particle
beams cross each other, these are the spots where the collisions happen and where
the experiments of the LHC are placed. The other four straights house the beam
cleaning, dumping and accelerating facilities. In Table 3 the main parameters of the
LHC are shown. [LHCDR]

2.5 A Large Ion Collider Experiment (ALICE)
ALICE is an experiment devoted to the study of strongly interacting matter and
the characteristics of the Quark-Gluon-Plasma in heavy ion collisions.

The aspect of ALICE is dominated by the huge magnet of the old LEP experi-
ment L3, which is being reused (Figure 3). Its dimensions are almost 15 m cubed,
giving enough room for most of the particle detectors. Only the forward spectro-
meter of the muon detector resides outside the magnet. The other detectors are
placed onion-like around the interaction point.

Scope of this magnet is to create a homogeneous magnetic field, in which charged
particles are forced to circular trajectories with radii dependent on their momentum.
The particle mass, in fact the quantity of interest, can only be identified with the
help of additional measurements.

As a large number of produced particles are anticipated in heavy ion collisions,
detectors must be endowed with high spatial resolutions to be able to trace the
trajectories and data taking must be capable of routing and saving the enormous
amounts of data.

2.5.1 ALICE-Detectors

The ALICE experiment incorporates many detectors. The first four detectors of the
upcoming list are the main detectors in the central barrel and all have full azimuthal

10 2.5 A Large Ion Collider Experiment (ALICE)

Figure 3: The ALICE Experiment and its detectors.

coverage. Their common pseudorapidity coverage is |η| < 0.9.

ITS The Inner Tracking System is the innermost detector of ALICE. It consists of
three types of two layered silicon detectors, from inside to outside these are:
The very high resolution silicon pixel detector (SPD) situated at radii of 4 cm
and 7 cm, which is followed by the silicon drift detector at 15 cm and 24 cm,
and lastly the layers of the silicon strip detectors at 39 cm and 44 cm. The
ITS is optimised for high resolution of the primary vertices, for efficient track
finding and for providing particle identification of low energetic particles.

TPC The ALICE Time Projection Chamber is not only the biggest detector in
ALICE, it is in fact the biggest TPC ever built. By the gas ionisation in its
volume of 95 m3, it gives the possibility of high resolution track finding and
momentum measurement (see also Chapter 3.1). Together with the energy
loss measurement the particle identification is realised.

TRD Because of its importance to this thesis the TRD is explained in more detail
in the next section.

TOF The Time of Flight completes the particle identification in pT regions where
the other inner detectors do not provide reliable information. It is built out
of 160000 multi-gap resistive plate chambers covering 150 m2 reaching a time
resolution of less than 100 ps.

2 INTRODUCTION 11

PHOS The Photon Spectrometer is a electromagnetic spectrometer, providing photon
and neutral pion identification, and discriminating direct from decay photons.
Its acceptance is restricted to the very mid rapidity region, and to 100 degree
in azimuth.

EMCal The Electromagnetic Calorimeter completes the measurements of jet prop-
erties and enhances the capabilities of measuring high pT photons, neutral
hadrons, and electrons.

HMPID The High Momentum Particle Identification Detector mainly provides
π±/K± and K±/ (p, p̄) discrimination up to 3 GeV/c and 5 GeV/c respectively.

MUON The MUON detector provides muon identification. Due to the needed
absorber it resides exclusively in the forward pseudo rapidity region. Like
electrons, muons are part of the electromagnetic decay channels of quarkonia,
which are important observables for QGP.

T0 The TZERO detector is a relatively small detector near the beam pipe. At
opposite positions and different distances of the interaction point arrays of
Cherenkov counters measure the collision time, which is needed by the TOF
as reference, the z position of the interaction and provide the wake-up signal
for the TRD, which comes prior to the L0 trigger (see also Chapter 4.1).

V0 The VZERO detector consists of plastic scintillator discs around the beam pipe.
It provides a minimum bias trigger for the central barrel detectors based on
the deposited energy and rejects background events for the MUON detector.

FMD The main purpose of the Forward Multiplicity Detector is to provide inform-
ation about the charged particle multiplicity at pseudorapidities not covered
by ITS.

PMD The Photon Multiplicity Detector measures multiplicity and the spatial dis-
tribution of photons, enabling the determination of the interaction plane, and
study even-by-event fluctuations in the forward rapidity region.

ZDC The Zero Degree Calorimeter provides a centrality measurement by detecting
the spectators and can be used as luminosity monitor.

2.5.2 ECS Control

Detectors must be steered, their state must be monitored and their output data
must be saved. In ALICE each of these tasks is deployed by one separate subsys-
tem. In order to direct all subsystems of the experiment there is a control entity
called Experiment Control System (ECS). ECS integrates the operator interface and
enables the operation of the experiment. It governs all subsystems:

• The Detector Control System (DCS) controls all supporting systems of the
individual detectors, configures and monitors their Front End Electronics

12 2.5 A Large Ion Collider Experiment (ALICE)

DAQ HLT TriggerDCS

ECS

Figure 4: ALICE online systems are steered by ECS.

• Data Acquisition (DAQ) is the entity responsible for the data flow between
the detectors and the mass storage

• The Trigger deploys the hardware triggering

• HLT is a software trigger system

Due to their importance to this theses DAQ, and the trigger system will be explained
in more detail later.

2.5.3 ALICE-Software

In the ALICE Collaboration each sub-detector group is responsible for building and
testing their detectors, mounting them into the experiment, and maintaining them.
During operation detectors will generate data, which shall be analysed or reconstruc-
ted. The reconstruction algorithms must be in a working, well tested state when
the experiment starts. This is only possible when all data output of the experiment
can be simulated long before first collisions. This is especially challenging when
taking into account the comparable low collision energies of previous experiments:
e.g. RHIC has a peak energy of 500 GeV in pp and 200 GeV per nucleon in AA,
which means that the models describing the expected characteristics of collisions at
LHC are extrapolations with quite big uncertainties.

All reconstruction and simulation algorithms of the detector data are written
in C++, and follow the concept of object oriented programming. The individual
detector algorithms have a common interface and are concentrated into one pack-
age called AliRoot, which uses ROOT as its base. ROOT is a framework, which
provides standardisation among different platforms (i386, AMD64, ppc ...), methods
for many programming problems (mathematical, input-output, graphical...) and a
C++ interpreter. Through this interpreter all methods within the compiled librar-
ies of the AliRoot and ROOT framework can be called directly. Commands to the
interpreter can be saved in so called macros. Processing usually takes place on the
very machine on which the interpreter runs and uses only one processor.

The AliRoot package is being developed with the help of an online version control
system, called Subversion (SVN). All changes are committed into the development
repository6 including a short description. The version control system saves not only

6under the SVN nomenclature the development repository is called trunk

2 INTRODUCTION 13

the newest version, but also all necessary information for extracting previous ver-
sions. This is a very important feature as in such a big project as AliRoot it is
indeed possible that multiple incompatible changes are committed almost simultan-
eously by different people. All changes since the beginning of the development can
be viewed by help of an online interface7. By branching in the current development
repository, SVN also provides the possibility of creating stable releases. There the
update policy is restricted to bug fixes only.

2.5.4 HLT Software Trigger

The High Level Trigger is the third layer of trigger system incorporated into ALICE.
In contrast to the lower two trigger levels, it is implemented in software. It is foreseen
to deploy an online reconstruction of the data for the main detectors, and based on
this, to perform online monitoring and calibration. This is to happen concurrently
in the time it takes the DAQ to built the complete event, out of the fragments
coming from individual detectors. Additionally, it decides on event level whether
data should be saved by the DAQ on the mass storage, or to be dropped. The online
reconstruction is performed on an computing cluster, situated in near proximity to
the ALICE cavern.

This thesis describes the development of the software components, needed to per-
form the online reconstruction for the data coming from the TRD detector. Thus
in the next chapter, TRD will be introduced, describing its purpose and its relev-
ant features for this thesis. In Chapter 4 the ALICE trigger system is presented,
concentrating on the HLT and its connections to DAQ and ECS. In Chapter 5 the
development of the HLT software components is described, and the changes of the
TRD offline reconstruction algorithms, which were needed to increase the processing
performance of the code. Finally, in Chapter 6 a comparison of the quality of the
resulting HLT TRD reconstruction and the TRD stand-alone offline reconstruction
is made.

7http://alisoft.cern.ch/viewvc/trunk/?root=AliRoot

http://alisoft.cern.ch/viewvc/trunk/?root=AliRoot

14

15

TR photon electronpion

cathode
wires

cathode pads

primary

clusters

anode
wires

region

drift

pion electron

Chamber

Drift

Radiator

entrance
window

z

x

region

amplification

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8

0

25

50

75

100

Pad number

T
im

e
 b

in

S
ig

n
a
l

cathode pads

region

drift

Radiator

Drift

Chamber

54

electron

3

anode

wires

cathode

wires

electron

x

y

region

amplification

Figure 5: Cuts through a TRD readout chamber. The right image, additionally, shows the gen-
erated signals of pads as function of the time bins. [GSI]

3 The Transition Radiation Detector

The TRD is a gas detector, which serves mainly two independent purposes in ALICE:
It completes the particle tracking between TPC and TOF and distinguishes between
pions and electrons in momentum regimes where TPC and TOF are not efficient.
The TRD is sub-sectioned into 18 supermodules, containing 5 stacks of 6 readout
chambers each, totalling into 540 readout chambers (Figure 6). As a supermodule
is a complete detector and has its own data output a very natural data parallelism
is at hand.

As depicted in the Figure 5 readout chambers consist of a radiator of 48 mm
thickness and a drift chamber of 37 mm thickness. At the entrance of the drift
chamber there is the drift electrode, which is followed by the cathode and anode
wires and finally the readout pads. By the applied high voltage between the drift
electrode and the anode wires, ionisation electrons drift towards the amplification
region. The cathode wires separate the drift from the amplification region and
guarantee a homogeneous field in the drift region. Having a very short drift time
the TRD is very fast and can be used for triggering purposes.

Each readout chamber has, depending on the size of the chamber, 1728 or 2304
readout pads which are organised in 144 columns and 12 or 16 rows. For decreasing
the total number of pads, the pads are slightly tilted by 2 degree in the pad plane.
The pads are thus parallelograms rather than rectangles with a typical size of 0.725×
8.5 cm2. As the pads of the chambers in a stack have alternating tilt, the total space
resolution along the long side of the pads is improved. The total number of pads
included in the whole TRD is 1.16 million covering an area of 736 m2. Table 4
summarises the main parameters of the TRD.

16

Parameter Value
Pseudo-rapidity coverage -0.9 < η < 0.9
Azimuthal coverage 2π
Radial position 2.9 < r < 3.7 m
Length Up to 7.0 m
Azimuthal segmentation 18-fold
Radial segmentation Six layers
Longitudinal segmentation 5-fold
Total number of modules 540
Largest module 117 × 147 cm2

Active detector area 736 m2

Radiator Fibres/foam sandwich, 4.8 cm per layer
Radial detector thickness X/X0 = 15%
Module segmentation in ϕ 144
Module segmentation in z 12-16
Typical pad size 0.725× 8.5 cm−2 = 6.2 cm2

Number of pads 1.16 · 106

Pad tilt 2°
Detector gas Xe/CO2 (85%/15%)
Gas volume 27.2 m3

Depth of drift region 3 cm
Depth of amplification region 0.7 cm
Nominal magnetic field 0.5 Tesla
Drift field 0.7 kV/cm
Drift velocity 1.5 cm/µs
Longitudinal diffusion 250µm cm−1/2

Transverse diffusion 180µm cm−1/2

Lorentz angle 8°
Number of readout channels 1181952
Time samples in r (drift) 24-30
Number of used ADC channels 1378944
ADC 10 bit, 10 MHz
Pad occupancy for dNch/dη = 8000 34%
Space-point resolution at 1 GeV/c in rϕ 600µm for dNch/dη = 8000
Space-point resolution at 1 GeV/c in z up to 2 mm
Momentum resolution δp/p = 0.025 for dNch/dη = 8000
Pion suppression at p ≥ 3 GeV/c > 100 at 90% electron efficiency
Event size for dNch/dη = 8000 11 MB
Event size for pp 6 kB
Trigger rate limits for minimum-bias events 100 kHz
Trigger rate limits for pp 100 kHz

Table 4: Some parameters of the TRD. [PPR1]

3 THE TRANSITION RADIATION DETECTOR 17

Figure 6: The TRD in its support structure. The ITS is situated in the middle, having the big
TPC around. The five-fold segmentation of the TRD stacks, each containing 6 TRD
readout chambers, can be clearly seen.

3.1 Working Principles of the TRD
As the TRD has two independent objectives there are two distinct working prin-
ciples. We shall begin with the principle mainly used for the tracking capability of
the TRD, which in the TPC is also extensively used for particle identification.

Gas Ionisation
High energetic charged particles flying through a gas lose energy by colliding with
the gas molecules, ionising the gas along their path. The average amount of energy
loss per unit length and thus the amount of ionisation electrons is dependent on the
properties of the gas and the properties of the particle. It is given by the Bethe-Bloch
Formula [SLI]:

dE

dx
= −2πne4

mec2
z2

β2

(
ln 2mec

2β2γ2EM
I2 − 2β2

)
,

where me is the electron mass, n is the electron density of the gas and I is its
effective ionization potential. z is the charge of the particle, β is its velocity and γ
the Lorentz factor. EM is the maximum energy transfer allowed in each interaction.
In the non-relativistic region this formula is dominated by the term β−2 and thus the
energy loss falls steeply. With further increasing velocity the energy loss stabilises
and rises slightly in the relativistic regime until it saturates in the high relativistic
region. Based on the amount of energy loss and combined with the momentum
measurement particles can be identified. However, this method has an important
limitation: due to the relativistic rise, particles cannot be distinguished in too high
energy regions. This is especially problematic in the case of electrons and pions,

18 3.1 Working Principles of the TRD

Figure 7: Scanning microscope images of the radiator materials: foam and fibre mats. [ATDR2]

since there are high pion fluxes and electrons are a major observable. Therefore the
second working principle of the TRD is essential: the transition radiation.

Transition Radiation
The transition radiation was predicted by Ginzburg and Franz in 1946 [GAF] for
non-relativistic particles and was first detected in 1959 by Goldsmith and Jelley
[GAJ]. A particle traversing the border of two regions with different dielectric con-
stants may emit transition radiation. The energy is given by the following expression

d2W

dωdϑ
= 2α~ϑ3

π

(1
γ2 + ϑ2 + ω2

1
ω2

)−1

−
(

1
γ2 + ϑ2 + ω2

2
ω2

)−1
 , (1)

where ω is the frequency, ϑ the angle of emitted radiation, ω1,2 are the plasma
frequencies of the two media and finally γ is the Lorenz factor of the particle. This
equation has a maximum at an angle of ϑ = 1/γ and thus the radiation gets preferably
emitted in forward direction. The total energy is given by integrating Equation 1
over all angles and photon frequencies to

W = γ
α~
3

(ω1 − ω2)2

ω1 + ω2
, (2)

which is linearly dependent on the Lorenz factor of the particle. Hence ultra relativ-
istic particles which have the same charge and the same momentum but different
masses can be distinguished by this method.

However as the intensity is very low, the probability of a single emitted photon
at one transition is of the order of the fine structure constant α, making many trans-
itions necessary. The total probability for the emission of transition radiation (TR)
inside a readout chamber is raised by the radiator, providing many transitions. It
consists of a sandwich of two Rohacell HF71 foam sheets and mats of polypropyl-
ene fibres (Figure 7). These components were chosen as a compromise between TR
yield, radiation thickness and mechanical stability.

Transition radiation from ultra-relativistic electrons is in the energy range of soft
to hard X-rays (< 50 keV [OBS]), which get absorbed by the gas, thus ionising it,
when entering the drift chamber. Providing a high absorption probability is crucial

3 THE TRANSITION RADIATION DETECTOR 19

 [100 ns]driftt
0 5 10 15 20 25

<
dQ

/d
t>

 [a
.u

.]

0

20

40

60

80

100

120

140

160

180

pion

kaon

Particle Species

electron

proton

muon

Figure 8: Average pulse height of different particles as reconstructed from simulated data. The
electrons have a higher signal then other particles due to the increased energy loss in
the gass. At the later time bins, and thus at the entrance of the readout chamber, the
energy deposition of the TR photon is visible.

as only then the TR photon can be detected. As the photo effect is proportional to
the atomic number of the gas atoms, the gas used in the TRD chambers consists
mainly of Xenon which has an atomic number of 54.

Signal Generation
Free electrons from ionised atoms drift along the homogeneous electric field in the
drift region towards the cathode wires. There they get accelerated in the highly
inhomogeneous field of the anode wires, thus leading to an avalanche of more ionisa-
tion. The positive charge of the resulting ion cloud around the anode wire induces a
negative charge in the readout pads, which is read out during the drift time of 3 µs
with a sampling rate of 10 MHz8. Not all atoms ionise, some only get to an excited
state which decays by emission of an ultra-violet photon. By the photo effect of
these photons hitting metallic surfaces inside the readout chamber, an avalanche of
released electrons producing more photons and ionising the gas would be initiated,
leading to the breakdown of the chamber. As these UV photons can be efficiently
absorbed by organic gases, the gas mixture used in the TRD consists to 85% of Xe
and to 15% of CO2.

The average pulse height of a readout pad due to different particles is shown in
Figure 8. As electrons are by far the lightest charged particles, only these reach
high enough γ factors for being able to generate considerable amounts of transition
radiation.

8thus there are up to 30 time bins for each pad at each event

20

21

4 Triggers
Modern collider experiments search for improbable and thus rare events. For being
able to still have enough statistics, high collision frequencies are needed. Saving
continuously all data from all detectors is not an option for the ALICE experiment,
since due to the high granularity, the detectors produce huge amounts of data while
operating. Thus a trigger system must be implemented, to be able to activate the
detectors and the data taking only when physical important events occur. This is
especially important for discontinuously working detectors like the TPC, where e.g.
the gating grid must be opened to make a measurement possible.

4.1 Hardware triggers (L0, L1, L2)
The Central Trigger Processor (CTP) combines and synchronises the trigger de-
cisions from the triggering detectors, and sends the result to all detectors. Some
detectors are continuously operational, some need a very early activation, other can
handle longer delays. Thus the triggering system is divided in multiple stages. The
first trigger decision, called L0, must be delivered 1.2 µs after the collision took
place. For that the triggering detectors contributing to this decision must hand in
their decision already 800 ns after the collision. Only very fast detectors can achieve
that. Slower trigger detectors, like the TRD, may have a delay up to 6.1 µs and
contribute to the L1 trigger signal, which is then delivered after 6.5 µs. After 88
µs the last trigger signal (L2) is delivered. It is used as a past-future protection, to
veto against previous L1 triggers. As this is the drift time of the TPC, it cannot
handle too many consecutive events within this time in pp collisions. Due to the
sheer amount of tracks, pile-ups, i.e. multiple events within the TPC, cannot be
reconstructed at all for PbPb collisions. Thus in PbPb collisions any additional L1
trigger within the L2 time would lead to a L2 reject. The data taking of the central
detectors is enabled only by the L2 accept. [ATDR1]

4.2 High Level Trigger
Besides the described hardware triggers, which start detectors and data taking,
ALICE has foreseen also a third trigger level. The so called High Level Trigger
will be used for online calibration, monitoring of the incoming data quality, and
as tagging or rejection trigger. For this purpose a fast real time analysis is being
performed for the main detectors. Opposing the low level hardware implementation
of the other triggers and since it is not constrained to a fixed time budget, this
online analysis is implemented in software written in the high level language C++.
The online analysis needs an online reconstruction at its base, which also used for
the online monitoring and near-time9 calibration of the detectors. In this context
offline processes are executed after events are written to the data storage and online
processes are executed during the data taking and thus before individual events get
saved. With the help of this online analysis another problematic issue of ALICE can
be resolved; the data rate of the detectors can be as high as 25 GB/s in lead-lead

9meaning run by run

22 4.2 High Level Trigger

Figure 9: The DAQ principle overview showing the data flow of two detectors, one being connec-
ted to the HLT (the right red highlighted area). The Event Building Network connects
the Local Data Concentrators, which buffer the incoming sub-events, and the Global
Data Concentrators, which build the events alternatively. The Storage Network in-
cludes the Transient Data Storage in the proximity of ALICE and the Permanent Data
Storage. [ATDR1]

collisions, out of which 2 GB/s are from the TRD. The tapes however, where the
data shall eventually be saved, can take only 1.25 GB/s. This is the reason why the
rejection trigger is needed. The HLT can use the reconstructed events to reduce the
data rate dramatically (up to a factor 10 [ATDR1]) by selecting interesting events
or sub-events and rejecting background events.

Although this thesis concentrates on the reconstruction, the possibility of using
the HLT as big “compressing machine” shall also be mentioned. In this mode the
HLT would just binary-compress the input data. However, this means that neither
monitoring nor near-time calibration nor triggering could be performed upon data
taking. Hence this mode would address the problem of decreasing the data volume
only. Additionally, tests of many different compressions algorithms have shown that
compression factors of only about two would be achievable [TPC, LOS].

4.2.1 HLT-DAQ interface

For operation, the HLT of course needs the detector data, but it also needs calib-
ration values and some of the permanently monitored values of the detector survey.

4 TRIGGERS 23

Figure 10: Detector LDCs (left) processing the HLT triggering decisions in mode C. [ATDR1]

Thus HLT is integrated by interfaces to the other ALICE sub-systems.
The interface between DAQ and HLT is required by the data exchange to and

from the HLT. As shown in Figure 9 the DAQ is connected to the HLT and to all
detectors via optical connections called Detector Data Links (DDL) and integrates
additionally a two level network dedicated to the Event Building, which is connected
to the Mass Storage. As the HLT receives and sends data from and to the DAQ,
it has separate inbound and outbound connections. The DAQ has three modes of
operation which determine the level of activity of the HLT [ATDR1]:

DAQ only - HLT disabled a.k.a. mode A. This is the starting point for the DAQ
operation and the DAQ returns to this mode when the HLT is disabled.

DAQ + HLT analysis a.k.a. mode B. The HLT is fully functional, but its trigger
decisions are discarded. The purpose of this mode is to give the possibility of
checking the HLT algorithms.

DAQ + HLT enabled a.k.a. mode C. The DAQ performs an event and sub-event
selection based on the trigger information from the HLT.

In the last two modes DAQ sends a copy of the detector data to HLT. There it
is processed and the result is returned back to DAQ. The HLT’s result might be
compressed data, or trigger decisions with additional data to be added to the event.
What happens during that “processing” for the data coming from the TRD is the
topic of this thesis and will be discussed in Chapter 5. In case of a negative trigger
decision DAQ dismisses the event, whereas in case of a positive trigger decision it
further processes the event by also adding the additional HLT data to it. This
additional data contains the needed information to have a pre-organisation of the
data, which may be used during offline reconstruction or analysis. Figure 10 shows
how the triggering decision of the HLT is processed by the LDCs. The event built
is then being sent to the Storage Network, where it is finally saved. On this saved
data offline reconstruction is being performed later on.

24 4.2 High Level Trigger

4.2.2 Event Processing

A high degree of parallelism is needed, in order to achieve the reconstruction through-
put needed to process all detector data. The level at which parallelism is applied in
the data processing implies different computing architectures, which lead to different
processing circumstances. The computing architecture must be chosen thoroughly
in the first step, as it sets the base of the later total computing design and cannot
be changed later on.

Sequential Event Processing
Sequential event processing is the most straight forward way of organising the com-
puting design. Whole events are distributed among many machines, where indi-
vidual events are reconstructed by one process only. Here parallelism is applied at
the event level, thus the process has access to all the information of the given event.
This however comes at the cost of high data transfer rates onto the individual ma-
chines, as the whole events have to be transmitted. Also this means that the whole
event must have already been taken in the first place. Considering the event sizes
and rates of PbPb events, which sum up to 25 GB/s, this is a strong limitation,
which makes online processing impossible with such a design. The ALICE offline
event reconstruction makes use of this processing method, which is implemented in
the so called computing GRID [ALE].

Parallel Sub-Event Processing
In this approach each machine gets a fraction of the whole event, processes it and
hands it further to the next processing step. Thus the bandwidth limitation is cir-
cumvented at the cost that each processing step does not have access to all the
information of the event. Each process must be independent of the others which
are running in parallel. This parallelism however is naturally given by the seg-
mentation of the detectors: as mentioned in Chapter 3 the TRD is composed of 18
independent supermodules. But not only the TRD also the other barrel detectors
have high degrees of segmentation. Consequentially the HLT is designed based on
this parallelisation method.

4.2.3 Physical Layout

The HLT is a high performance computing cluster with 171 nodes and 136810 pro-
cessors on which the reconstruction is processed in parallel. The nodes have main-
stream server hardware and use a mainstream Linux distribution as operating sys-
tem. The nodes are organised as Front End Processing nodes (FEP) and Computing
Nodes (CN). The FEPs are connected to the DAQ DDLs and have custom PCI ad-
apter cards (H-RORC), which receive the data from the DDL and transfer it directly
to a reserved area of the machines memory. All nodes are connected through Gigabit
LAN. The data is first being processed on the FEPs and then it is further processed
on the CNs. As the FEPs are physically connected to specific DDLs they process
data from those links only. Whereas the CNs are interchangeable, depending on

10these are the number for the pp runs in 2010 [TAL]

4 TRIGGERS 25

S
u
b
sc

ri
b
er

P
u
b
li

sh
er

Processing

S
u
b
sc

ri
b
er

P
u
b
li

sh
er

Processing

Named

Pipe

Named

Pipe

Named

Pipe

shared memory

Figure 11: Data exchange between components. After being informed by the publishing com-
ponent through the named pipe, the subscribing component accesses the data of the
publishing component directly on whose shared memory block. [MRD]

the needs. In case of the TRD, 5 FEPs and currently as many CNs can be used.
However, the number of CN nodes assigned to the TRD is not a constant and can
be changed on short notice. The nodes have 8 CPU cores and FEPs are connected
to 2 or 4 DDLs, each coming from one supermodule. The trigger result of the HLT
is routed via dedicated nodes, which are connected to the outgoing DDLs.

All following statements concerning speed will be based on a 2 GHz AMD Op-
teron 2212 processor, if not indicated differently. This was the typical processor in
the HLT cluster in the late 2009 runs.

4.2.4 Data Transportation Framework

At each event the response of the HLT to the DAQ is based on the merged outcome
of the reconstructed data from all nodes. The nodes must be controlled to behave as
one unit, to know what to do with the data coming and where to send the processed
data to. This is done by a Publisher-Subscriber Framework, which was specially
developed for the ALICE HLT. It takes control of the nodes, starts the necessary jobs
for data processing and provides the communication between the nodes. To avoid
copying between nodes, the framework also provides a shared memory mechanism
(see also Chapter 8.1).

Special interfaces to effective code are implemented, giving the HLT framework
the possibility to directly call procedures without the ROOT interpreter. The in-
terfaces are named components, and are in fact very much like executables, which,
however, can be used by the framework only.

The framework’s name indicates the way components are communicating. The
principle is shown in Figure 11. A component which needs data from other com-
ponents, subscribes to those, which in turn, when data is available, publish the data
to all their subscribers. The subscribers do not get the data right away, they get
a descriptor of the data, enabling them to decide whether this particular data is
of interest or not. If a subscriber decides to use the data, it will read it from the
shared memory block, where the publisher has written it to. When finished, the
subscriber tells the publisher it may reuse the shared memory block. By this way
of communication, only really needed data has to be transferred from one node to
the other. [TSD]

Each node buffers its incoming data for being able to be kept busy. If the node
is not fast enough and the buffer of a node is filled, the node produces back-pressure

26 4.2 High Level Trigger

to its preceding nodes. When all buffers of nodes in a chain are filled a BUSY signal
from the H-RORC is transmitted to the DAQ, which halts the detector. [ATDR3]

4.2.5 Modular Data Processing

In the HLT processing tasks are carried out by individual processes, which are
called HLT components. There are three types of components: source, processing
and sink. Components are organized in a chain, which defines the layout of the
total data analysis procedure. Source components are used to publish the input
data into the processing chain, processing components do calculations on that data,
and finally sink components are the endpoint of the analysis, where the output data
is saved locally or gets sent to HLT external receivers. Possible receivers are the
DAQ via the output DDLs or the monitoring machines via a network connection.

Chains are set up by means of XML configuration files, which are read out by the
HLT framework during the initialisation of the run. The components reside in com-
piled libraries, but are to the framework like command line executables, as during
their start up arguments can be handed in, to control some predefined parameters.
This modularity is source of great flexibility enabling to change the whole analysis
procedure without recompilation, by just altering the configuration files.

4.2.6 ECS-HLT Interface

As the whole experiment is steered by ECS, HLT also includes an interface for
communication with this system. From ECS’ perspective the HLT is a fivefold state
machine, whose state transitions are initiated by ECS. The states and the transitions
are shown in Figure 12. The procedure of starting a run decomposes in these steps:

• Initializing: First contact of ECS to HLT

• Configuring: XML configuration files are read, containing the information on
what node to place which component

• Engaging: ECS run parameters are received, components are started and set
up

• Starting: Data taking is started, by engaging data flow components

4 TRIGGERS 27

Figure 12: State diagram of the HLT, as seen by the ECS. [AHI]

28

29

5 The Development of HLT::TRD
The topic of this thesis is to develop an implementation of the online reconstruction
for the TRD data suitable for running on the HLT, including online monitoring and
calibration. Under the constraint of sharing with the offline code at least the most
important algorithms, the development split in following parts: the code needed to
interface the offline algorithms to the HLT Framework was implemented. This was
done in multiple steps, the first implementation established a working code base,
which was then refined. At the same time a review of the offline algorithms under the
aspect of processing performance was undertaken. Based on this, those parts of the
code that could be accelerated without quality loss were re-implemented. Where
this was not possible, the quality of the reconstruction had to be cut. This was
done by skipping or simplifying calculation steps during the online reconstruction.
However, the output quality has to meet some quality standards, thus procedures
of quality assurance were used.

As mentioned in Chapter 2.5.3 each sub-detector group is responsible for the
implementation of the algorithms concerning its detector. This is also true for
the HLT online algorithms. In case of the TRD the decision was taken, that the
online reconstruction should use as physical relevant algorithms those of the offline
reconstruction. This was a unique decision, the other detectors decided to have two
completely separate implementations. The upside in having only one code is that
this code is already tested and there is no need to maintain two different codes.
Using one code under different circumstance also helps discovering malfunctions,
which would remain unseen otherwise. However there is a big drawback. The
offline reconstruction is used for processing the raw data which has already been
saved in the data storage, i.e. data which has passed the DAQ until the end.
This is preferably done with the highest available precision. Whereas the online
reconstruction is being executed before the data potentially gets saved, as the HLT
is choosing whether to actually really save the data or not (see also Chapter 4.2).
This is done during the data taking and must thus follow its speed.

In Chapter 5.1 an introduction to profiling is given, as this is the basis for
fast software. The software developed must be tested and checked for bugs and
malfunctions before being executed on the HLT cluster, this is done on the test
server, Chapter 5.2. The results of the code review and the challenges to increase
the processing performance of the offline code are presented in Chapter 5.3. The
implementation of the code interfacing the offline algorithms to the HLT framework
is described in Chapter 5.4. Then, in Chapter 6, the reached output quality of the
code in its online mode will be compared to the quality of the offline mode, showing
whether and if so, how much the trade-offs degraded the reconstruction quality.

5.1 About Profiling
Developing fast software demands for knowing and understanding what happens
inside the computer and especially inside the processor during run time. Compared
to directly writing machine code or assembler, using high level object oriented pro-
gramming languages as C++ eases the development itself as the software can be

30 5.1 About Profiling

Sampling Profiler Instrumenting Profiler
Overhead usually less than 1 % up to 500%

System wide Yes (OS, drivers, apps, libs) No (just applications and libraries)
Collected data hardware counters call graph, software counters
Data taking every N clock cycles continuously
Environment effects result has no effect
Accuracy statistical and systematic errors perfectly reproducible

Table 5: Some typical characteristics of sampling and instrumenting profilers. The accuracy of
the collected data of sampling profilers includes statistical errors (due to the sampling)
and systematic errors (due to the possible influence of the environment on the running
programme).

Figure 13: A screenshot of KCachegrind. KCachegrind is a KDE tool used for displaying the
profiles taken by the Valgrind profiler. On the left is the function overview with the
activated function marked blue (in this case: AliTRDclusterizer::MakeClusters(int)).
Top shows the source code of the activated function (here we see the core of the
clusterizer) with the estimated number of cycles (CEst) and the count of mispredicted
branches (Bm). Bottom is the call-graph, showing the callers of the activated function
and the functions called by the activated function.

5 THE DEVELOPMENT OF HLT::TRD 31

structured much better. Thus complicated procedures can be hidden behind simple
interfaces. This however also hides what happens inside the processor, as it is not
obvious any more what instructions are behind a code line11. By performance ana-
lysis, a.k.a. profiling, this knowledge can be regained. In fact modern profiling tools
can do much more than just instruction count.

There are various profiling tools available, which can be classified by their work-
ing principle: sampling and/or instrumenting profilers. Some are operating system
dependent (like the profiler integrated into the MS Visual Studio), some are pro-
cessor dependent (like Intel VTune or AMD CodeAnalyst), some are costly and
some are free of charge (like gprof, the Valgrind suite or oprofile). Advantages and
disadvantages of the working principles are summarised in Table 5. Based on the
following requirements the Valgrind suite was chosen as the main profiling tool:

• Easy and fast overview of the collected data

• Detailed line-by-line analysis

• Processor independent

• Running on Linux

• Free of charge

Valgrind is basically a virtual machine in which the programme is run. It simulates
the processor and its cache hierarchy and has thus a detailed and very accurate view
on what is being processed. Based on this virtual machine there are different highly
valuable sub-tools for different objectives apart from the required profiling feature:
finding bugs, memory leaks and monitoring memory usage.

The profiler produces a so called call-graph showing functions and function calls
(Figure 13). Additionally it counts the number of instructions, L1 and L2 cache
misses including the write back of dirty cache lines, branch predictions and its misses
and calculates an estimation of the CPU cycle count based on that information.
Running programmes in a simulated environment however, of course means that
the execution is slowed down significantly, thus making it unusable for real time
applications. Additionally Valgrind needs an executable of the programme, which
means that it cannot be used to profile already running software, like the operating
system itself. Inside the HLT cluster the software is run by the HLT framework.
This does not provide a reasonable entry point to the algorithms and, on top of that,
the whole processing is distributed among many machines. Thus Valgrind cannot
be used to profile the software, while it is being executed on the HLT cluster. For
this short-cut interfaces have been implemented to create executables, which were
then profiled on a test computer.

Before any real performance tests can be run, simulated data samples must be
generated. These data samples should be as realistic as possible, especially when

11By no means should this be interpreted as saying that object oriented programmed software
is per se slower than assembler programmed. Just using assembler does not necessarily make the
end product fast. It is very laborious to develop even small software packages using low level
programming and on top it is usually very poorly portable.

32 5.2 Test Setup

it comes to the number of particles per event, their momentum distribution, and
noise. When this is settled the first speed test must be run on the HLT cluster,
to establish the current total speed of the code. Then a detailed analysis of each
called method, preferably for each code line or even for each instruction, should be
prepared. Based on this bottle necks can be tracked down. When fast software shall
be developed, profiling is part of the development cycle. Each new functionality and
each change should be profiled, for making sure that these changes do not interact
with the rest in an undesirable way. However before the emphasis is laid on the
speed, the algorithm must be working reliably. For being sure not to develop a
poorly performing algorithm the data layout and the principle speed should be still
estimated, making the development a tightrope walk. Of course not only the speed
must be checked but also the quality of the output must be monitored. This is
explained in detail in Chapter 6.

5.2 Test Setup
Developing software in a big project such as ALICE demands for reasonable coding
standards. Before committing code to the repository, checks concerning compatibil-
ity, stability and quality are necessary. For producing high performance code these
checks must be extended, including also profiling. The development cycle of HLT
components, as shown in Figure 14, has three stages:

• Experimental stage

• Tested stage

• Commissioned stage

After developing a new component or introducing major changes to existing com-
ponents, the respective components are classified as experimental. Only after stand-
alone stability tests the components can be assigned tested. However, before a
component can really be used in the online reconstruction it must pass two addi-
tional tests: running inside the whole reconstruction chain while being managed by
the HLT Publisher-Subscriber Framework in its stand-alone mode, and, this is the
last test, while the HLT framework is itself managed by ECS. Components passing
also those tests are commissioned.

The first stability tests can be carried out using macros inside the ROOT C++
interpreter with AliRoot libraries loaded. These macros are calling the components
as if those were operating inside the HLT cluster. For being able to trace bugs
efficiently and for profiling it is however much more useful to have compiled versions
of these macros. This was done by the help of the build system cmake, which is very
well suited for this purpose. Additionally such executables can be very comfortably
called on the command line, with command line arguments changing the behaviour.
By the use of a debugger (GDB in this case), and the Valgrind suite most bugs
can already be found at this stage. Few bugs, however, show up only when the
components are executed by the HLT Publisher-Subscriber Framework. This is due
to the fact that macros only try to simulate what really happens during an online
reconstruction of HLT. More specifically, components interfaced by a compiled macro

5 THE DEVELOPMENT OF HLT::TRD 33

configuration

on−line

configuration

on−line

Development

test

unit
failed

macros

test
failed

stand−alone

PubSub
failed

test

System
failed

minor corrections

COMMISSIONED

Production runs

major corrections

TESTED

EXPERIMENTAL

Figure 14: Development cycle of HLT components. [MRD]

34 5.3 Offline Reconstruction

Clusterizer

Tracker

RawReader

Figure 15: Dataflow between Cluster Finder (a.k.a Clusterizer), Raw Reader and Track Finder
(a.k.a Tracker).

are all inside the same virtual address space12, whereas components called by the
HLT framework are executed each by its own, and are thus in separate address
spaces. On the HLT development computer at Frankfurt a test setup is installed,
such that the HLT framework can be deployed just like on the HLT cluster. By that
also the first test towards the commissioned status can be accomplished locally. In
case of malfunctions this eases the debugging a lot.

For stability reasons, the HLT cluster operates with the latest AliRoot release,
not with the experimental SVN trunk. As the HLT TRD components are using
offline code, the library containing these components must be linked against the
offline libraries containing the offline procedures. This means that development
of HLT components must not only be compatible to the trunk but also to the last
release. This backward compatibility can only be guaranteed by an own build system
of the HLT software. This build system (cmake) checks for the available offline code
functionality and compiles the HLT components accordingly. Thus bigger changes
of the components usually also ask for updates of the build system.

For testing a new development on different versions of the AliRoot code, all
these versions must be available and quickly exchangeable. Therefore a suite of
a few command line scripts has been developed for efficiently maintaining several
AliRoot code bases with multiple compilations each.

5.3 Offline Reconstruction
The TRD offline algorithms were reviewed under the aspect of processing perform-
ance with the goal of meeting the required speed, which is given by the running
experiment. For the TRD this means getting data from the 1.16 million readout
pads at 30 time bins at an event rate of 2000 Hz13 in pp. However, first tests showed
that only about 40 Hz were reached by the offline code. This resulted not only due

12for an explication of the virtual address space see Chapter 8.1
13as mentioned in Chapter 4.2.3 these speed indications refer to an AMD Opteron 2212 processor

5 THE DEVELOPMENT OF HLT::TRD 35

to the speed of the offline code itself, but also to the data containers used by the
offline code. Unifying needs of both objectives, maximal output quality for offline
and enough speed for online, into one code without any form of branching means to
have the code running at the required speed with the maximum precision. As this
was not always possible precision-to-speed trade-offs during the execution of the on-
line reconstruction are necessary. What these trade-offs consist of will be explained
in the context of the given processing step.

To get a rough understanding of what is being done for reconstructing data
from the TRD detectors and to establish some of the vocabularies used, in the
following the necessary processing steps are introduced. Then each processing step
is presented in more detail and the implications on the review are shown.

The offline reconstruction in the TRD consists of the following steps:
• Reading and decoding the incoming data

• Searching the data for signal maxima, this step is called cluster finding

• Connection found clusters to tracks, called track finding
These general steps also apply to what is done during the HLT online processing,
and also for most of the barrel detectors in ALICE. The first step is in fact the
beginning of any real data processing, not just for the ALICE detectors. In case of
the TRD it is performed by the raw reader.

For accomplishing the second step, the data is searched for maxima of the pads
signals. The data is processed in a geometrical way: for each time bin there is
in principle a two dimensional array, which represents the readout pads in their
plane with their individual signal level as data. In this plane maxima of signals are
searched for. These maxima are called clusters, and are comparable to the bubbles
in the old bubble chambers. The processing is carried out by the cluster finder.

The third step is needed to find clusters that can be connected to continuous
lines. Those lines are called tracks and should ideally be where the real traces
of the particles were. This processing is performed by the track finder. Figure
Figure 15 shows the data flow between the three processing steps during the TRD
reconstruction.

Offline reconstructions are set up and performed calling methods of the AliRoot
framework directly through the C++ interpreter of the ROOT framework. The
reconstruction code is steered by the so called reconstructor, which also includes the
information about the configuration used. Thus under different environments the
reconstruction can run with different parameters, like it needs to be done to change
from pp to PbPb reconstructions, as an example.

In the following chapters the main reconstruction classes are presented. After an
introduction, the changes required to increase the processing performance are de-
scribed in “Implementation Changes” and the resulting performance is summarised
in “Performance Results”.

5.3.1 Raw Reader

The raw reader is used in TRD reconstruction to read the detectors data, decode
it and save the result in memory. To decrease the needed bandwidth the data is

36 5.3 Offline Reconstruction

zero suppressed meaning that only signals above a certain threshold are transmitted
by the detector electronics to the DAQ. Additionally, the information of three time
bins is compressed into one binary double word (32 bits). Reading this data directly
would result in unaligned memory access, which makes the data not easily accessible.
Hence it must be converted into aligned data bundled into arrays (see also Chapter
8.1). If decoding of the data was not necessary, it would be possible to only have to
save the pointer of the data and directly access it through that pointer.

The raw reader gets the starting point in the raw data stream during the ini-
tialisation. This is done once for each supermodule by the cluster finder, a.k.a.
clusterizer. Then follows a call from the clusterizer for each of the 30 readout cham-
bers of the supermodule. At each such call the raw reader reads the headers of
the raw data, makes consistency checks based on this information, decodes the data
and saves it in a three dimensional array, which is then passed to the clusterizer
to process. The dimensions of this array are the number of rows and columns of
readout pads in the readout chamber and the number of time bins. Those are the
natural coordinates to address each point of the readout chamber given by the geo-
metry. Later in the reconstruction the time coordinate, also called drift time, is
translated to the corresponding drift length. Additionally to the three dimensional
array another two dimensional helper index array is filled. This saves the informa-
tion which pads have some signal at at least one time bin. The purpose of this array
is explained in Chapter 5.3.2.

Implementation Changes

First speed tests were made with simulated raw data as real data from the detector
was not yet available. Additionally, at that time simulated and real raw data had
different formats. The different formats resulted into different raw readers that were
used to decode the data, and thus one of the basic principles of profiling had to be
ignored; use as realistic data as possible. This made it possible to hide a fundamental
problem of that specific real data reader.

It turned out that the raw reader for real data had a conceptual drawback in
terms of processing performance. As it was very much devoted to quality assurance
(QA) it eased the access to statistics of the reading process, so called error contain-
ers. The problem was that the raw reader was thought to decode the raw data of
the whole detector, all 540 chambers, and populate a huge (almost 100 MB) sub-
structured array at first call. At later calls it read out of this array chamber-wise.
Data was copied twice: once from the raw stream to the raw reader’s memory and
once from this memory to the clusterizer’s memory.

Thus a new reader had to be implemented, which would decode only the needed
readout chamber at each call, by preserving the QA possibilities. This was done by
the according people assigned to this class.

Another measure for speeding up the reconstruction was the implementation of
the index array. This array helps the cluster finder while searching for maxima. In
this array the raw reader indexes each pad which has a signal above zero at some
time bin. This is explained in detail in the next chapter, but as this helper array is
filled by the raw reader is should be mentioned here also.

5 THE DEVELOPMENT OF HLT::TRD 37

clusters per SM

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

m
s]

p
ro

ce
ss

in
g

 t
im

e
 [

0

10

20

30

40

50

60

Figure 16: Processing time of the clusterizer for one supermodule. Shown in blue is the initial
situation, in red the resulting performance due to changes of the raw reader. The
cause of the bending will be explained in the next chapter.

Performance Results

Figure 16 shows a measurement of the processing time of the clusterizer for one
supermodule at different event sizes. The inefficiency of the initial implementation
of the raw reader is visible at the intercept of the blue points. This is the result of
decoding and saving the whole incoming data at first call in a temporary array. The
red points, which are the measurement of the more efficient raw reader, are not only
shifted by the height of the intercept of the blue points, but also the inclination is
slightly reduced. This is due to the fact the that even if the old reader only had to
read out of the data array without decoding, the array layout was such that delays
occurred. The optimized reader decodes the data just in time and hands the output
directly to the temporary array of the clusterizer.

However, the general look of the curve is basically unchanged, as it is dominated
by the clusterizer.

5.3.2 Cluster Finder

The main task of the cluster finder, also called clusterizer, is to look for maxima in
the decoded data signals. The search is done for each time bin independently. A
valid maximum must meet the following criteria:

• the pad at which the maximum is searched for must have a signal above a
certain threshold

• its two neighbours of the same row must have smaller signals14

• the sum of the signals from those three pads, which is the charge of the cluster,
must be above a threshold

14Note, neighbouring rows are of no interest, since the pads are far from being quadratic and
thus there is barely an influence to neighbours of the same column.

38 5.3 Offline Reconstruction

time bins
0 5 10 15 20 25 30

a.
u.

0

20

40

60

80

100

120

140 raw ADC values

tail cancelled values

Figure 17: Tail cancellation of the signal of a readout pad.

The embedded subfigure in Figure 5 shows maxima of given pads at different time
bins.

In case of the offline reconstruction the clusterizer is called by the reconstructor,
given the raw data memory block. This memory block is being decoded by setting
the raw reader to the beginning of the memory. At the following calls from the
clusterizer the reader returns the three dimensional array (compare previous chapter)
containing the decoded signals of each pad at each time bin and the index array.

As detectors do not respond ideally, all the data is convoluted with the detectors
response function. For the TRD the total effect is decomposed in its row14 com-
ponent, called pad response function, and its time component, called time response
function. As especially the time effect is very perturbing for the correct operation
of the clusterizer, the first thing the clusterizer does after getting the data from
the raw reader, is to deconvolute the time response function from the signal. This
process is called tail cancellation (Figure 17).

Now the data is ready to be searched for the maxima. For processing the data
adequately the clusterizer needs additional information during the maximum finding.
The gain of the readout pads is especially important, since if two neighbouring pads
have different gain factors (i.e. having the same input level they output signals of
different height), their outputs are not comparable without further information and
the maximum finding will be disturbed. Furthermore, the total charge of the cluster
is also an important value in itself, as it directly correlates to the energy loss of the
particle.

At the end of the process each maximum found is converted into a space point.
This includes the fitting of the three pads with the known pad response function,
thus extracting the y coordinate. The x coordinate is calculated based on the time
bin at which the cluster was found, with the help of the drift velocity and the time
zero shift of the pad. Due to the geometry of the readout pads, clusters are only
distributed in one pad row. Thus the best estimate of the z coordinate is the middle
of the pad. The drift velocity and the time zero shift are not absolutely constant
in time, like the pad or time response functions. Hence these values are the result
of a calibration. Calibration values are saved in the Offline Conditional Date Base

5 THE DEVELOPMENT OF HLT::TRD 39

(OCDB) in the GRID. For a more detailed explication of the calibration process,
see also Chapter 5.4.5.

When the conversion is terminated, all space points found are appended in the
output array of the clusterizer, which is then forwarded to the next processing step,
the track finder.

Implementation Changes

As already mentioned, the code review was done to increase the processing per-
formance of the offline reconstruction algorithms, by preserving the result quality
as much as possible. The first speed profiles (see Chapter 5.1) showed that the clus-
terizer was the bottleneck, limiting the whole HLT reconstruction to about 40Hz in
pp.

Firstly the algorithm of the cluster finding was modularised, increasing source
code auto documentation and profiling ease. This also revealed a problem of cal-
culating the charge of overlapping clusters, which was solved as described in the
following.

The naive implementation of finding maxima in the three dimensional data array
would be to loop over the whole array checking each pad15. With the realistic
assumptions of track multiplicities, there are less than 100 tracks per chamber, i.e.
less than 30% of the pads have a signal, and thus most of this array is empty. To
cure this highly inefficient processing the index array was implemented. Each pad
at which the raw reader reads a signal at some time bin gets an index in this array.
This index tells the clusterizer which pads are worth looking at. Those pads are
then checked at all time bins as that index array only has two dimensions15, column
and row. This is due to the fact that particles are mostly crossing the TRD readout
chambers perpendicularly, making the time bin information of the index array almost
useless. This is also very beneficial for the processing speed, as resetting too big
arrays is quite time consuming.

Before being used however, the helper array is sorted by row and column. The
data from the detectors is not necessarily saved in this order, although this is im-
portant for the following reason: If two particle traces are close, two clusters of
one row might overlap, i.e. there is only one pad between the two maxima. To
assign a reasonable charge to each of those clusters, the signal of this middle pad
must be divided among the two clusters. To be able to process this easily, the two
clusters have to be found in a specific order, making the sorting of the helper array
mandatory.

Subsequent tests showed that a usual sorting of each of the two dimensions of
the helper array is too slow. Thus the two dimensions, row and column, are binary
merged to one dimension. Therefore the bits counting the row and those counting
the column are simply appended and then interpreted as one number. Thus only a
one dimensional sorting has to be done, which can be performed very fast by the
C++ sorting function, which is much faster than the higher level sorting algorithms
provided by the ROOT package.

15the data array has 144*16*30=69120 members, the helper array has 144*16=2304 members

40 5.3 Offline Reconstruction

Once the array is searched efficiently, the algorithm of maximum finding itself
can be addressed. The method checking whether a signal maximum is at a given
pad, is inside the innermost loop of the clusterizer. Thus any small change here has
an immediate and significant impact on the whole clusterfinding process. The checks
inside this method are ordered very carefully to be able to have as much throughput
as possible. Each check which fails, makes the processor return to the loop. Thus
the more probable a check fails the earlier the check must occur. However, the
more complicated the check is, the later should the check occur. Thus this ordering
obviously was done using profiling. A wrong ordering of these checks may easily
result in speed penalties of this important method of a factor three or more!

As an exact comparison with the threshold values needs the gain information of
the current pad, already the first check would include a call to the data base. Addi-
tionally, each function call takes time. To avoid both issues a first rough pre-check
against a conservative value is done before entering the method.

To be able to check the quality of the reconstruction algorithms, the code must
also cope with simulated data in addition to raw data. Here simulated data does not
mean simulated raw data, but a data type which contains additional Monte Carlo
(MC) information, which is needed for quality analysis (see also Chapter 6). This is
why the code has to provide the necessary facilities for processing both data types,
while the processing ways should be as joint as possible. The outcome of this is that
for propagating the data array, the helper array and the additional MC information
arrays from the reader to the clusterizer, an additional layer of abstraction was
implemented. This interface class is used to synchronously manage the arrays. For
non-ambiguity and because it could thus be used also during the simulation phase,
that class utilises for each of the 540 read out chamber another set of arrays. While
this is needed during simulation and reconstruction of the simulated data, it is not
necessary during reconstruction from raw data.

However, the overhead is tolerable when reconstructing raw data from all super-
modules by one single clusterizer. But in the case of the HLT each supermodule
is processed by a separate clusterizer (see also Chapter 5.4), making most of the
created sets of arrays useless to each individual clusterizer as it gets data only from
the corresponding 30 readout chambers.

Thus this interface class was redesigned to use only one set of arrays for all
readout chambers during raw data reconstruction. After the clusterizer finishes its
job with one readout chamber, it tells the interface class to reset the used input
arrays, and calls the raw reader, which fills them again with the data from the next
readout chamber.

Resetting the data array is mandatory because the raw data is usually zero sup-
pressed, i.e. signals below a threshold are not sent by the TRD detector. The
resetting of the helper array is fast as the array is only two dimensional15. The data
array however has three dimensions15, which makes the resetting already quite time
consuming. This is especially unfortunate when the data array is empty or close to
empty. Thus the resetting was implemented in two different ways dependent on how
much data was added to the array. If the number of pads having a signal is above a

5 THE DEVELOPMENT OF HLT::TRD 41

certain level, the array will be reset completely by one function provided by the C
language. If below that threshold, the array is reset using the helper array to find
out the few pads which had signals and resets those pads only.

Found maxima have to be transformed into space points: A coordinate trans-
formation is necessary, before saving the cluster in the output array. For this, the
position of the maximum is estimated by the pad response function and is corrected
for the effect of the interaction of the electric and magnetic fields. The x coordinate
is calculated based on a constant drift velocity. Additionally, also an estimate of
the uncertainties is needed. These are mainly given by pad size and pad response.
For all these quantities there are also higher order effects included. For this look-up
tables are used. Preventing the copying of these constant arrays from the static
memory segment onto the stack, each time the correction function is called, is an
example of easy to achieve speed-ups. (For a detailed explanation, see Chapter 8.1.)

As performance boost of last resort, it is now possible to instruct the clusterizer
to produce clusters only on every second time bin. This increases the speed of the
clusterizer and the tracker by a factor of two. However, the tracking efficiency will
drop steeply for tracks below 2 GeV/c.

Additionally to the described measures the number of dynamically allocated
arrays and/or their sizes were reduced whenever possible, speeding up the resetting
after each event. In case the array is used only inside a method, size reduction
can by very easy to pursue, as there only the highest and lowest expected number
must be known. When however the array is needed by multiple methods or even
classes, a longer investigation is needed. The least that was tried to be done to any
array on the heap (see Chapter 8.1), was to fix it in its memory location during a
complete run reducing memory fragmentation. This was mainly done by moving
objects containing bigger arrays as high up in the loop hierarchy as possible, e.g.
from the class methods to the class itself.

When talking about arrays the paradigm of locality should also be mentioned.
The reconstruction itself has per definition a bad temporal locality, meaning that
once processed, data will actually never ever be processed again. Thus the processor
cannot take full advantage of its caches. What remains is to at least ensure good
spatial locality, meaning that data which is needed next should be right beside the
data processed now. In case of the three dimensional data array of the clusterizer
there are two uses, which need a contradicting array topology. The tail cancellation
needs all time bins for each column-row combination and the maximum finding needs
the columns for each combination of time bin and row. Thus only for one of the two
algorithms the spatial locality could be guaranteed. The choice was to opt for the
tail cancellation’s needs, as here the whole data array undergoes a transformation by
a closed algorithm, which accesses the data in a very tight unbranched loop. Thus,
the array topology was chosen to have the time as fastest index, then the column
and the row as slowest index. This index order is not too bad for the maximum
finding, as the number of time bins is very low (usually between 24 and 30) and
the column is the second index. Furthermore the maximum finding procedure needs

42 5.3 Offline Reconstruction

Clusterizer

ROCs loop

Tail Cancalla!on

Pads loop

IsMaximum

FivePadCluster

CreateCluster

Raw Reader

Gain

v dri"

T0

B-field

Save Cluster

Pad Response

Figure 18: Flowchart of the data inside the clusterizer.

external data access and contains quite some processing inside the inner loop. Thus
it would not have made full advantage of the more favourable topology anyhow.

The speed of the streamlined clusterizer is now about 1500 Hz for real data
of triggered pp collisions at 7 GeV. This was reached with only very insignificant
quality-to-speed trade-offs. This is a big step from the previous 50 Hz. This achieve-
ment is put into perspective by comparison to the time it takes of just looping once
over the data array, which is 400µs on the same processor, for a single readout cham-
ber. During the HLT reconstruction however each supermodule must be processed,
thus the speed of just doing nothing else but looping once per event over the data
arrays of one supermodule would be 83 Hz. This shows the importance of the helper
index array. A tiny quality cut, however, was needed to be accepted. It comes from
skipping the calculation of an additional value: the count of active pads around each
cluster in its pad row. It is used by the tracker to artificially decrease the weight of
clusters with more than five active pads. This is done, since such high counts are
very unlikely, and thus those clusters could be the result of a not properly working
detector, or a noise burst, and might thus be outliers. Processing this value means
looping over the data array along the pad row counting all consecutive active pads.
The return of this calculation is a minuscule quality improvement and was thus
skipped. The fact that such a trivially processable value already has a macroscopic
effect shows the processing efficiency of the clusterizer reached very well.

Work Flow

The work flow diagram shown in Figure 18 is the result of the reimplementation of
the clusterizer. The incoming helper index array and data array are filled by the raw

5 THE DEVELOPMENT OF HLT::TRD 43

1 for(curr.time = 0; curr.time < fTimeTotal; curr.time+=iEveryNTB){
while(fIndexes->GetNextRC(curr.row, curr.col)){

if(GetData(curr.row, curr.col, curr.time) > fMaxThreshPre && IsMaximum(curr))
{

if(last){
6 if(curr.time==last.time && curr.row==last.row && curr.col==last.col+2)

FivePadCluster(last, curr);
CreateCluster(last);

}
last=curr;

11 }
}

} if(last) CreateCluster(last);

Listing 1: The core of the clusterizer as it is implemented in the class AliTRDclusterizer.

reader. The data array is deconvoluted by an exponential tail cancellation, which is
executed in the time bins dimension for each pad which has an entry in the index
array. The index array sorts itself at the first get-data call. At the last index in the
helper array the tail cancellation has finished and the index array resets itself, for
being used once again.

This time the data is looped over for the maximum search (Listing 1). Here
for each time bin all indexed pads are checked. The function checking for three
maximum conditions (IsMaximum) is in the innermost loop of the clusterizer, with
the rough pre-check ahead.

A maximum passing all conditions is then analysed for overlapping with the
previous maximum (FivePadCluster). This is the case when the previous maximum
was at the same time bin, in the same row, and two columns before the actual
maximum. If so, the signal of the middle pad is distributed among both maxima.
This is done by an iterative process with the initial condition of an equal distribution
of the signal. The process is aborted when the last change of the distribution ratio
was less than a given value.

Found maxima are converted into space points, a.k.a. clusters, with tracking
coordinates and assigned errors (CreateCluster). This coordinate transformation
from local chamber coordinates to tracking coordinates needs the information of the
pad size, the drift velocity, the magnetic field, the diffusion parameters and the time
zero information. These parameters are taken from the OCDB. Created clusters are
finally saved in the output array of the clusterizer.

Performance Results

Figure 19 shows the processing performance of the clusterizer before and after the
optimizations. The inclination of the red curve is very high, as long as not all readout
chambers contain data. In case that a readout chamber does not contain any data,
it is almost completely skipped from any processing, and thus here baseline ineffi-
ciencies can be hidden. These baseline inefficiencies where mainly array resettings
during the maximum finding. When all readout chambers contain data, the curve
enters the linear region. In this region the improvements of the maximum finding

44 5.3 Offline Reconstruction

clusters per SM

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

m
s]

p
ro

ce
ss

in
g

 t
im

e
 [

0

5

10

15

20

25

30

35

40

Figure 19: Processing time of the clusterizer for one supermodule. Shown in red is the situation
after optimizing the raw reader, it is the same curve as in Figure 16. In black is the
resulting performance due to changes of the clusterizer.

procedure itself make the difference.

5.3.3 Track Finder

The track finder or tracker is used for connecting the found space point (a.k.a.
clusters) into continuous lines. The TRD tracker has two modes of operation: barrel
and stand-alone tracker. The barrel tracker relies on the fact that during the offline
reconstruction trackers from all detectors can exchange data. Thus the trackers
can base their calculations on each other. This mode is particularly useful for tracks
which can be prolonged into most of the detectors. However, for tracks which do not
have prolongations into inward detectors, like particles originating from conversions
inside the TRD, the second mode is used. This stand-alone tracker is executed after
the barrel tracker and operates only on unused clusters. Since this tracker does
not rely on information outside of the TRD detector, this is the mode used by the
HLT online reconstruction for all kind of tracks. Here, all detectors are processed in
parallel on different machines, disallowing any intercommunication. Thus only this
mode was taken into account for the code review and is presented here.

Before explaining the processing of the tracker, a look at the ALICE and TRD
geometry is necessary. Particles are originating at the main vertex position and
travel to the outer layers of ALICE. Particles16 are deflected by the magnetic field,
which is oriented longitudinally to the beam pipe. As a consequence, particles are
moving along helices. The axis is constrained in direction of the field, the radius
is determined by the transverse momentum pT and the pitch by the pseudorapidity
η (see also Figure 21). Like all detectors of ALICE, the TRD has a projective
geometry, thus particles in the interesting momentum region do not cross stacks.
Thus a stack-wise tracking can be applied. A first sketch of the tracking procedure

16here only charged particles are of relevance, since neutral particles anyhow cannot be detected
by the used gas ionisation detectors

5 THE DEVELOPMENT OF HLT::TRD 45

Tracker

Stack Loop

Seedconfig Loop

Choose Seed Configs

Make Seeds

Seed Loop

Sieve

Sort Seeds

Make Track

Helix Fit of
Seeding Clusters

Sieve

A�ach Clusters of
Seeding Chambers

Fit Tracklets in
Seeding Chambers

Helix fit of
Tracklets in

Seeding Chambers

Sieve

A�ach Clusters of
Nonseeding
Chambers

Fit Tracklets in
Nonseeding
Chambers

Helix fit of all
Tracklets

Improve Tracklets

Sieve

Figure 20: Flowchart of the data inside the tracker. The white steps are skipped during the HLT
reconstruction.

provides the best opportunity to explain the vocabulary before entering the details.
The processing needed can be summarised by these three steps:

• Choose seeding configuration

• Make seeds

• Make track

The stand-alone tracking is divided in two conceptual disjunctive parts: The track
finding, which is represented by the second point, and the track fitting, the third
point. Point one is needed as preparation. The final track fitting, or tracking, is
done by a Kalman filter [KAL]. In principle a Kalman filter could be used for track
finding and track fitting in one pass. However, in the stand-alone case this concept
was not pursued. In regard of the TRD’s peculiarities the two stage processing
was followed instead, of which seed finding is the first. Found track seeds are later
handed to the Kalman filter producing minimal uncertainty tracks.

In order to produce these seeds, an approximation of the track is used for deciding
whether it is a good seed candidate or not. This approximation consists of a helix
fit of four seeding clusters. A helix can be generally defined by four points, when
however the axis is constrained only three points are needed for defining the helix.
The fourth seeding cluster is used to provide a possibility for a quality measurement
and based on this a quality cut is applied. In case of passing this quality cut the
clusters of the chambers along the seed candidates are attached to the particular
candidate. These clusters are then fit by a straight line, which produces the so called
tracklets. It is possible to fit the clusters of one readout chamber by a straight line,
as the readout chamber is only 3.7 cm thick. Based on these tracklets another helix
fit is processed. This delivers the track parameters at the entrance of the TRD,

46 5.3 Offline Reconstruction

Figure 21: Particles in the TPC. Due to the magnetic field of the L3 magnet, particles move
along helices.

5 THE DEVELOPMENT OF HLT::TRD 47

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Seed Chamber 3

Seed Chamber 2

Seed Chamber 1

Seed Chamber 0

Seed Chamber 3

Seed Chamber 2

Seed Chamber 1

Seed Chamber 0

Figure 22: Two of the fifteen predefined seeding chamber configurations.

which are needed as seed for the Kalman filter. The tracklets are then used to
update the track information at their specific layers.

Choose Seeding Chamber Configurations
Examining the details of the tracking is crucial for understanding the possibilities of
improving its processing performance. The work flow begins with the selection of so
called seeding chambers. These are chambers that will produce “good” seeds. There
are several predefined seeding configurations each including four of the available six
chambers per stack. Three of these seeding configurations are selected for being
processed during the seed finding.

The three seeding configurations are selected by a quality measure, which in-
cludes two components:

qi = qi,a
∏
qi,j

Here qi,a is the a priory configuration quality, qi,j is the quality of the j’th chamber
included in that seed configuration, and finally qi is the total quality of the seeding
configuration. The three configurations with the highest qi are chosen. In Figure 22
two of the predefined seeding configurations are shown.

The a priory quality is basically given by the number of consecutive chambers
and the number of gaps between the chambers. The quality of each chamber is based
on the deviation of the number of clusters in that chamber to the mean number of
clusters multiplied by an integer value bigger than zero. The higher the deviation
the lower the quality.

This quality measurement provides a dynamical way of finding chambers useful
for producing seeds by discarding empty, and thus broken chambers.

Make Seeds
This next step is done for each of the three seeding configurations. In each of the
chambers of the given seeding configuration seeding clusters are produced. These
are given by the centre of gravity of nearby clusters. The assumption here is that a
seeding cluster is a good representative for the clusters of a tracklet. As the TRD
chambers have a height of only 3.7 cm and tracks are mainly crossing it perpendic-
ularly, that assumption is justified. However for making sure that also intersecting
tracks are found, not only one seeding configuration is used, but multiple.

For producing the first approximations of the tracks, all “possible” combinations
of seeding clusters are used. The possible combinations are found by starting at
the seeding chamber 3 (see Figure 22). For each seeding cluster in this chamber

48 5.3 Offline Reconstruction

all seeding clusters of seeding chamber 0 are taken into account which are inside
a window defined by two angles. From here all clusters of seeding chamber 1 are
considered which are again in a window. At seeding chamber 2 only that seeding
cluster is taken which is nearest to the position of the linear interpolation of the two
seeding clusters from chamber 0 and 3. For all such combinations of seeding clusters
found a helix is fit. Fits with a too high χ2 are dropped, as this means that the
probability of the fit describing the data is low. For passing fits, clusters around the
seeding clusters are attached to tracklets, which in turn are attached to the track.
The tracklets are fit based on the clusters by a straight line fit. Then a new helix is fit
based on the tracklets. Now the likelihood of the tracklets is calculated and checked.
This is a cumulative value based on the χ2 of the tracklets and the total number of
clusters. Along the extrapolation of the helix to the remaining two chambers which
were not the seeding chambers clusters are, if available, attached to tracklets, which
are then fit. Before performing the last helix fit, an iterative process of improving
the cluster sets attached to the tracklets is started. This process replaces individual
clusters with other neighbours, recalculates the tracklet based on this new set and
compares the quality.

Finally the found seed candidates which survive also the last χ2 are saved in
an array. Each step and each performed check which fails leads into discarding the
tracklets of the current set of seeding cluster and finding the next possible set.

Make Track
Each of the seed candidates found describes a track. Thus Make Track is inside
the loop of all found seed candidates (Figure 20). However, as the seed candidates
originate from three seeding configurations of the same stack, each track is repres-
ented by up to three seed candidates. In order to not produce multiple tracks of the
same particle trace, seed candidates with too many clusters which are used by other
tracks are rejected. For being sure that only the best seed candidate of each track
is used for the track generation the seed candidates are first sorted by the likelihood
produced in Make Seeds.

The actual generation of the track is based on the helix fit and the tracklets
of the seed candidate. Using the parameters of the helix fit the Kalman seed is
produced describing an approximation of the track at the entrance of the TRD.
Then the seed is updated by the information of the tracklets to generate a minimum
uncertainty track. Actually exactly one point along the tracklet is used, this point
is called reference point. There the y coordinate uncertainty is minimal. This point
is also of importance for the Quality Assurance Chapter 6.

Implementation Changes

The code review for increasing the processing performance had to include the tracker
as its speed in its offline version was about 100Hz for minimum bias pp events. The
tracker however is a much more complex construct than the clusterizer. Thus the
code review was restricted to slim it down to the absolute necessary processing
steps, without a general reorganization. Still, output quality had to be monitored
very closely for choosing the right combination of calculations. At some few critical

5 THE DEVELOPMENT OF HLT::TRD 49

spots, however, changes had to be introduced similar to those of the clusterizer:
increasing processing performance without losing precision.

First of all, the procedure of choosing the seeding configurations had to be
altered. In case of the complete offline reconstruction, the stand-alone tracking
is performed after the barrel tracking has finished. Thus only clusters from tracks
without prolongations to the inner detectors remain at this stage. In case of running
the stand-alone tracking without preceding barrel tracking, the situation however
changes radically. In this case it does not make sense to have the chamber-wise qual-
ity of Choose Seeding Chamber Configurations strictly dependent on the deviation
of the number of clusters to an integer multiple of the mean number of clusters.
Having big number of clusters statistical fluctuations lead to fake decisions. Thus
the importance of this deviation must be reduced with increasing number of clusters.

The first obvious possibility to increase the speed is to reduce the number of
returned seeding configurations. In the offline reconstruction the three seeding con-
figurations with the highest quality are returned. By decreasing this to the best two
configurations only, the processing speed of the tracker is increased by one third,
while the tracking efficiency slightly drops by 1% at 1 GeV/c. For reaching even
higher processing speeds of course the number of returned seeding configurations
can be decreased to one. This however includes a much stronger efficiency cut (5%
at 1GeV/c).

Another step towards a streamlined tracker was to cut the procedure of Make
Seeds just after the fitting of the tracklets to the clusters the first time. Thus
especially the iterative procedure of refitting the tracklets was dropped completely.
As this includes a big amount of refits, which even increases with the number of
clusters per chamber, a big leap in processing performance can be attributed to this
change. However, this change also includes a great degradation in terms of quality.
Since the second helix fit, which is based on the tracklets, is completely skipped,
the spatial quality of the track is based only on the first helix fit. This includes
only four seeding clusters in the four seeding chambers. Additionally the curvature
is not determined there, thus no momentum information is left. Thus for the HLT
reconstruction a helix fit was added at the beginning of Make Track. This helix fit
is however different to the one performed during the offline reconstruction in Make
Seeds: it is constrained to the primary vertex17. As most tracks originate near to
the primary vertex, this restriction only affects tracks without prolongations into
the inner detectors. By moving the second helix fit into Make Track the helix fit
is called only for seeds which survive the cut in front of Make Track and thus it is
called much less often then it would when being inside of Make Seeds. The drawback
of this procedure is that there is no sorting of the tracks depending on their χ2 of
the helix fit possible any more, but this is the quality cut which was necessary.

One major change, which increased performance by preserving the quality, was
the inclusion of a self-written linear fitter, which is used by the tracklets. This
replaces the very high level implementation of the ROOT framework, which was
very poorly performing. The self-written implementation uses the fact that a linear
fit can be processed by just using sums of the values and their squares.

Additionally at specific spots the error propagation of the clusters toward the
17additionally to the constrained axis

50 5.4 Online Reconstruction

clusters per SM
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

m
s]

pr
oc

es
si

ng
 ti

m
e

[

0

200

400

600

800

1000

(a)
clusters per SM

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

m
s]

pr
oc

es
si

ng
 ti

m
e

[

0

20

40

60

80

100

120

(b)

Figure 23: Processing time of the tracker with offline (blue) and online (red) configuration for
one supermodule at different event sizes. Figure (b) shows a zoom to the red points.

tracklet was simplified. First of all the uncertainties of the first helix fit at the
position of the tracklet is skipped completely, only pre-set values are used. Secondly,
the cluster error is not recalculated based on a Gaussian fit of the signals when it is
attached to the tracklet.

With the measures described the tracker has been accelerated from 100 Hz to
about 1000 Hz in minimum bias pp events. The bulk of this performance increase
was done in a selective way. As contrary to the clusterizer quality losses were
accepted, the resulting quality had to be monitored very closely. The procedure and
the results of this Quality Assurance are described in Chapter 6.

Performance Results

The resulting processing performance of the speed optimized stand-alone tracker as
it is run on the HLT cluster compared to the stand-alone tracker as it is run in the
offline reconstruction is shown in Figure 23. Especially the higher order dependency
of the standard tracking is very problematic for realtime usage. This is mainly due
to the big number of refits.

5.4 Online Reconstruction
Data coming from the TRD detectors during the online reconstruction basically
takes the same processing steps as in the offline reconstruction. There are how-
ever many administrative differences which can be summarized with these words:
parallelism, transport, and control.

In the HLT TRD reconstruction the parallelism is applied at the supermodule
level. This means that each supermodule is reconstructed separately. The pro-
cessing is modularised to be flexible and to be able to distribute needed work to
as many different computers as possible. After being received and processed by
the FEPs data is transferred to other computers (CNs) via ethernet. Thus a huge
amount of different jobs is being processed on many different computers, which
makes the control of all of these being essential. These tasks are carried out by the

5 THE DEVELOPMENT OF HLT::TRD 51

Data volume to

be processed

P
ro

ce
ssin

g
 ste

p

Processing complexity

Figure 24: The principle of HLT processing. Each processing step shall decrease the data volume
such that the next processing step may have a more complex processing.

Publisher-Subscriber Framework. It takes care of the jobs on the machines and the
communication between them. Processes which shall be started by the framework
are described in classes, which inherit from one base class and are called components.
The development of the components needed for the data reconstruction, calibration
and monitoring was part of this thesis. The components are in general closed ana-
lysis units. In case of the TRD the reconstruction and calibration components are
interfacing offline code, like clusterizer and tracker. This code is thus shared between
the HLT online and the offline reconstruction. The needed speed-up of this code
was described in the previous chapter. Now the focus will be the components itself
and the communication between them. Another important issue addressed in the
following is the placement of the components onto the available computing machines.

To be able to cope with the high amount of raw data, each reconstruction step
reduces the data volume thus the next more sophisticated processing step has to
run only on a concentrated data sample (Figure 24). The first reconstruction step
is the clusterizer, which is followed by the tracker. Those two reconstruction com-
ponents prepare the data for the analysis components, monitoring components and
calibration components.

In this chapter the components developed are presented. As the implementation
of exchanged data containers is a very important issue, this is the starting point
prior to turning to the components.

5.4.1 Data Exchange between Components

Since the processing on the HLT cluster is performed by many computers, net-
work transmission between is needed for the communication between processes. As
network can quickly turn into a bottleneck, it is mandatory do have a close look
at what has to be transmitted and how this should be done. At the first tests it
already became clear, that the data types used in the offline reconstruction are not
suitable for the data exchange in the HLT. The reason is the parallelism of the HLT
in conjunction with the object oriented, inheritance based dynamic polymorphism
used by virtually all classes of ROOT and thus also of the AliRoot framework.

When data passes from one component to another, the executable it is processed
by changes. Data might even find itself on another machine, as the participating
components are distributed among different nodes, depending on how the compon-

52 5.4 Online Reconstruction

1 class AliHLTTRDCluster { // class implementing the micro cluster
2 public:

AliHLTTRDCluster();
AliHLTTRDCluster(const AliTRDcluster* const inCluster);
void ExportTRDCluster(AliTRDcluster* const outCluster) const;

private:
7 UInt_t fSignals; // Signals in the cluster

UChar_t fPadCol; // Central pad number in column direction
UChar_t fPadRow; // Central pad number in row direction
UChar_t fPadTime; // Uncalibrated time bin number
UChar_t fBits; // Bits of the cluster

12 };

struct AliHLTTRDClustersArray { // header for the micro clusters
AliHLTTRDClustersArray(Int_t det):fDetector(det),fCount(0){}
Short_t fDetector; // detector number

17 UShort_t fCount; // number of clusters following the header
AliHLTTRDCluster fCluster[]; // open array of clusters following the header

};

Listing 2: Cluster and cluster-header exchanged between clusterizer and tracker component.

ents happen to be arranged (see also Chapter 5.4.7). This has a crucial implication
as each running executable lives in its own address space, which is mapped to real
addresses by the operating system (see also Chapter 8.1). When an instance of a
class using dynamic polymorphism, or having pointers as data members, is written
out and read by another executable, the pointers become useless as in this new
address space they point to locations with different meanings. Among those point-
ers is also the hidden virtual table pointer (vpointer) pointing to the virtual table,
which is needed for polymorphic objects and is an array of pointers pointing to the
virtual functions. The only way to reliably ship such an object from one executable
to another is to stream it. That means that not only this object must be copied,
but anything pointed by its pointer-data-members must gain a meaning in the new
address space. What makes this a problem is that all classes within both the ROOT
and the AliRoot framework are based on one abstract base class, making all inher-
ited classes polymorphic. Thus already small events, with only very few tracks have
quite a considerable amount of pointers, which makes the streaming very slow.

To make an example: Let’s have an event with two tracks. Considering the most
common, each traverses all six TRD layers, thus there are six tracklets per track,
and each tracklet has an average of 26 clusters. Thus there are 26*6*2=312 clusters,
6*2=12 tracklets and the two tracks. All those 326 objects are instances of classes
with more or less complicated heritage from the abstract base. Streaming these
objects takes about 60% of the CPU time needed to calculate them.

Data Containers

In order to circumvent this problem, data containers holding just the needed data
members of the tracks, tracklets, and clusters have been implemented. These contain
only the absolutely necessary values, and are tuned for high conversion speeds and

5 THE DEVELOPMENT OF HLT::TRD 53

small sizes. Using encapsulation these containers can initialise themselves based on
the offline objects, or create an offline object based on themselves. These containers
are implemented as classes. To decrease the time needed for conversions these HLT
data containers are befriended to the offline classes, gaining unobstructed and fast
access to the data. To decrease the size of these containers to a minimum, data
members are sorted by size (see also Chapter 8.1).

What is sent from the clusterizer component to the tracker component are not the
clusters but only the not transformed maxima. These are saved in one data container
which, out of historical reasons, is called cluster data container, or just cluster.
To avoid confusion, these clusters will be called micro clusters in the following.
These micro clusters contain just the signals of the three neighbouring pads of the
maximum, and the number of the row, column and time bin at which the maximum
was found. The signals of the three pads are merged into one binary double word,
just like it is done for the data transmission from the detector to the HLT. The
three local coordinates can each be represented by one byte. The remaining byte
for completing the alignment is used for a flag indicating whether the cluster was
overlapping with another one. This is used later on by the tracker for determining
the quality of the cluster. In total that leads to a size of a micro cluster of 8 bytes.
This information is sufficient to unambiguously identify a maximum in its read out
chamber. However, this is not enough for the tracker as it needs to know global
coordinates. Thus also the number identifying the readout chamber itself must be
transmitted. There are 540 readout chambers, and to identify each 10 bits are
needed. Adding this to the micro cluster data container would result in adding 16
bits18. In each readout chamber there are however many clusters, which share this
information. To exploit this evidence the following implementation was chosen:

All micro clusters of one chamber are following a header, which contains the
detector number and the number of following micro clusters. Additionally this
header contains as last data member an open array of the micro clusters. Via
that array all micro clusters of the readout chamber can be addressed comfortably.
Listing 2 shows the structure of the micro cluster and its header.

The tracker component needs to ship tracks and tracklets to the monitoring and
calibration component. Each tracklet is the straight line fit of clusters that are part
of the same track in one readout chamber. Beside of the spatial information, the
tracklet contains also all clusters that were used for the fit. The tracker reduces
the data size, as all clusters originating from noise do not lead to tracks. Thus
it is possible to output tracks, which contain clusters, that are less compressed:
the clusters saved in each tracklet are an inherited version of the micro clusters,
including the global tracking coordinates. Thus these are fully-fledged clusters and
are directly usable by the following components, without the need of a coordinate
transformation. The tracklet is now being used as the header, thus it also contains
the open cluster array providing a transparent access to the clusters.

This leads to the track which, actually, is the object of interest. Each track
is calculated out of up to six tracklets. The track is used as header to the other
tracklets, just as the tracklet is a header for the clusters. However, due to the
varying number of attached clusters, tracklets do not have a defined size, which

18This is because either way data addresses would be unaligned

54 5.4 Online Reconstruction

means that the concept of open arrays cannot be applied here. Instead the tracklets
are addressed by pointer arithmetic. For this each tracklet needs to know its own
size, including all the clusters.

Alternative to Data Containers

For completeness, the other discussed and tested method of solving the streaming
problem shall also be mentioned. Considering the pointer data members are not
of interest or can be restored. The only remaining problem is the hidden virtual
table pointer. What is feasible is to treat the offline objects as the HLT containers,
i.e. save them directly into the shared memory block and read them out by the
next component. Then, for using the read objects, a new offline object is created
and its vpointer is copied onto the read objects. Like this, the vpointer is restored
and the read objects are fully usable. This method only works because the HLT
computers are all binary compatible and although it is very easy to implement, it
has a drawback: the offline objects are much bigger than the corresponding HLT
objects. For comparison let’s take the two tracks from before: the total size of the
offline objects would be 41056 Bytes, whereas the size of the HLT objects totals into
9760 Bytes. For events with hundreds of tracks this makes quite a difference. This
of course is only a problem for data that must be transferred to other computers.
However this, let’s say C++ hack, is dependent on a specific implementation of
the C++ compiler and the target architecture. Even though these issues could be
covered during the configuration of the source code, the decision was taken to opt
for the more secure implementation with the data containers.

Procedure of Data Exchange

The data shipment from one component to the next is done as follows: Based on the
offline objects coming from the offline processing algorithm, HLT data objects are
created in the shared memory block of the processing component (see also Figure
11). When the processing of the event has finished a descriptor is set up containing
some crucial information: What kind of data it is (cluster, tracks, histograms...),
what supermodule this data is from, how big the data block is and where it can be
found (i.e. the pointer to the beginning of the data in the shared memory block).
This descriptor is sent to the subscriber component which reads it. If interested,
it uses the HLT data objects from the publisher components shared memory block
right away, or it converts them back to the offline objects. So there is at least one
conversion: from the offline object to the HLT object. But, as emphasis was laid on
it, this conversion is very fast: less than 0.5% of the total CPU time is invested into
that.

5.4.2 Reconstruction Components

The TRD reconstruction components are used to interface the offline processing
units, like clusterizer or tracker for being used by the HLT framework. The com-
ponents set up the needed environment for the offline processing unit and prepare
the data exchange to other components.

5 THE DEVELOPMENT OF HLT::TRD 55

1 <Component ID="CF">
<ComponentID>TRDClusterizer</ComponentID>
<Parent>DDL</Parent>
<Options>output_percentage 100 -lowflux -experiment

-tailcancellation -faststreamer -yPosMethod LUT</Options>
6 <Shm blocksize="250k" blockcount="1000"/>

<Multiplicity>1</Multiplicity>
<Library>libAliHLTTRD.so</Library>
<ForceFEP/>

</Component>

Listing 3: XML configuration of the clusterizer component. The framework is notified that a
component named TRDClusterizer, which can be found in the library libAliHLTRD.so
needs the data coming from the DDL. The arguments setting up the component are
given between the Option keywords. The node at which the component shall be ex-
ecuted, as well as the amount of shared memory needed is given by the ForceFEP and
Shm keyword respectively.

During an offline reconstruction where all reconstruction steps are performed by
only one process, the different processing steps can easily communicate with each
other, as they share the same memory space. Even though the HLT framework
provides a shared memory system, one has to remember that data still needs to be
transmitted through a network to reach other nodes. As communication must be
kept to the absolute minimum, so must the dependencies between processes.

Component Initialisation

As shown in Figure 25, all HLT components have five states which are invoked
by the HLT framework, which in turn is steered by ECS. While the framework
is being configured by ECS, it is given the ECS configuration parameters and it
reads the XML configuration files, which define the available processing nodes, the
needed components, and the placement of the component on the nodes. During
engagement of the framework, it creates the jobs on the nodes loading the shared
libraries where the components are saved in. The components are created by a
call to the classes Constructor, where the most basic initialisations are carried out,
like creating the class members or allocating the needed heap memory space (see
also Chapter 8.1). Then the DoInit method is called, given the arguments of the
XML configuration files. The offline processing units (clusterizer or tracker) get
their configuration parameters from the reconstructor, a class used to steer the
whole offline reconstruction. Thus before initializing the offline processing unit the
DoInit method sets up the reconstructor with the parameters taken from the parsed
arguments of the XML file. After this is finished the component is ready for data
processing. For this, the component enters the event processing loop. When the
run is being terminated, the component exits this loop, cleans its memory space
and finally is deleted. Listing 3 shows the XML configuration of the clusterizer
component.

The XML configuration files are saved locally on the HLT cluster. As the com-
ponent arguments are usually not changed during a run period and as it is useful to

56 5.4 Online Reconstruction

External event processing loop

Memory allocation

Internal setup

Memory cleanup

Internal cleanup

Reconfigure Reconfigure (opt)

Parse arguments

yes

arguments?

haveno

ReadPreprocessor

Reconfigure

DoEvent

Environment

Create

Init

CDB access

Delete

Event Processing

DoDeinit

DoInit

Constructor

Destructor

Figure 25: The work flow of HLT components includes five stages. [MRD]

5 THE DEVELOPMENT OF HLT::TRD 57

Reconstructor

Clusterizer

Tracker

Cluster Array
�me bins

(a)

Tracker Component

Clusterizer
Component

ReconstructorReconstructor

Clusterizer Tracker

Cluster Array
�me bins

Off to HLT HLT to Off

Off to HLT

Cluster Array
�me bins

(b)

Figure 26: Flowchart of the data during an offline (a) and a HLT reconstruction (b).

have those arguments saved in a place accessible from outside of the HLT cluster,
these arguments may also be saved as OCDB entries. These are parsed by the
Reconfigure method, in case no other arguments are given. By that all necessary
information to reproduce the state of the components during a specific run can be
retrieved from all over the world. But still in case of malfunctions the components
can quickly be given different arguments in the XML files.

Implementation

During the offline reconstruction the offline processing units are steered by an in-
stance of the reconstructor and communicate through it. As this communication is
not possible in the HLT, this behaviour must be emulated during the online recon-
struction to make the processing units work, even if those are in their own address
space, separated from the rest (Figure 26). This is done by running each of the
reconstruction components with its own instance of the reconstructor. Depending
on how the reconstructor is set up by the component arguments, the components
can be used to process the data at all levels of accuracy. Thus the performance
optimisations implying quality cuts, described in Chapter 5.3, of the tracker and
clusterizer can be enabled, or disabled, leading to HLT online, or stand-alone offline
reconstruction result qualities.

Apart from this, the task of the reconstruction components during data taking
is to prepare the incoming data before it is forwarded to the offline processing units.
After the offline processing unit finishes its processing, data is converted to the HLT
data containers and the data descriptor is filled.

For the clusterizer component, which gets its input data from the HRORC ad-
apter card19, this preparation consists in these steps:

• Setting up the raw reader to the address of the memory where the HRORC
has saved the raw data to

19see also Figure 9 and Chapter 4.2.3 for an explication of the HRORC

58 5.4 Online Reconstruction

• Reading the DDL number out of the Common Data Header of the raw data
and forwarding this information to the raw reader

Based on this information the raw reader checks the integrity of the raw data and
returns warnings on failures, indicating potential data corruption or misconfiguration
of the detector. As this can be seen by the HLT operator, errors in the detector
configuration can be immediately unveiled already at the very first events of the
run.

The clusterizer used in the clusterizer component is an inherited version of the
offline clusterizer, which further eases the conversion from the offline data types to
the HLT data containers. This is done by polymorphically overriding the method
which saves the created cluster into the output array. Generally however, dynamic
polymorphism should be applied with care as methods have a slight speed decrease
compared to normal methods when being called. This overridden method converts
the offline clusters to HLT micro clusters and saves them in the output memory
block. The beginning of this block is given by the component before starting the
cluster finding. When the clusterizer has finished its job the component is returned
the size of the written data. The component adds the description information and
sends out the written part of the block.

The tracker component gets the micro clusters from the shared memory block of
the clusterizer component. As it has been discussed in Chapter 5.4.1 the clusterizer
component sends only the information of each cluster which is actually describing
a maximum. In order to extract all the other necessary information the tracker
component needs to do the same as it is done by the offline clusterizer in the last
processing step: transform the maximum into clusters. This means a coordinate
transformation from the local readout chamber coordinates into tracking coordin-
ates. These transformed clusters, which are all appended into an array, are given to
the offline tracker.

Once the tracker has finished, the tracker component grabs the output array of
the tracker, which contains all found tracks with their tracklets and clusters, and
converts them into the HLT data containers. These are created directly on the
output shared memory block. After adding the description information the block is
sent out.

5.4.3 Monitoring Components

In order to facilitate an overview of the status of the online reconstruction during
data taking, the monitoring components send out different monitoring plots to the
display at the ALICE control room. These plots are shown on the operator display
and can also be viewed remotely via the internet.

There are two types of monitoring components: the cluster monitoring compon-
ent and the track monitoring component. The cluster monitoring component gets
its data from the clusterizer component, the track monitoring component from the
tracker component. The following distributions are shown:

• charge per cluster

• time bin per cluster

5 THE DEVELOPMENT OF HLT::TRD 59

Figure 27: Screenshot of the TRD online histograms during reconstruction.

60 5.4 Online Reconstruction

• number of clusters per detector

• total charge per detector

• incoming size per event

• clusters per tracklet

• tracklets per track

• η, ϕ and pT distribution of tracks

As shown in Figure 27, these histograms can be seen by the operators in the ALICE
Control Room. As these plots show the output of the reconstruction process which is
based on the offline reconstruction, problems shown here will most likely also extend
to the adjacent offline reconstruction of the saved data. In case of a misconfiguration
of the detector that would have remained unseen, these monitoring plots give a
unique possibility to cross check. In case the histograms look peculiar, the operators
can call an additional expert, who may view the plots remotely via internet. The
decision of aborting the run and reconfigure the detector can then be then taken by
the expert.

Implementation

The monitoring components get the input data from their parents’ components. To
avoid network bottlenecks, there is not one central component getting the data from
all nodes, but instead, on each node a separate monitoring component is executed.
For each input object (cluster or track) the above mentioned quantities are determ-
ined and filled into a histogram. These histograms integrate the data over the run
time.

Before the histograms can be sent towards the display, the histograms of all his-
togramming components must be merged. This is done in a subsequent component,
explained in the next chapter. There however the problem of network bottlenecks
might arise again, and exactly this was the reason for having one monitoring compon-
ent per node. Additionally, as the histograms are objects of the ROOT framework,
they must be streamed, which is inherently slow. However, as the histograms are in-
tegrating over run time, these problems are simply solved by sending the data more
rarely than once per event. For achieving this, the time at which the last sending
occurred must be saved. Until a set time interval did not elapse, any other output
of the component is prohibited. The time scale for this interval can be adjusted
freely; a useful setting is several seconds up to one minute. Thus the monitoring
components process all the data, the observer however is shown a snapshot only
every now and then, which is completely sufficiently.

5.4.4 Histogram Merging Component

The histogram merging component is needed since the monitoring components take
their data per node. In order to get a fast overview of the detectors state, it is
however more practical to not display each histograms form each node separately.

5 THE DEVELOPMENT OF HLT::TRD 61

Additionally some of the histograms of the tracker monitoring component are only
useful when the whole detector is included into one histogram.

As the task of adding histograms is independent of the data included in the
histograms, there exists only one implementation of the merging components, which
is executed in two instances. Each instance exclusively computes the data of the
cluster or track monitoring component.

Implementation

The histogram merging component gets its input data from the cluster or track
monitoring component of all nodes. Each histogram of one monitoring component
is added with the corresponding histograms of the other monitoring components.

The design of a component doing only this would be almost trivial. The mon-
itoring components, however, send their data only after a time interval elapsed.
The interval is fixed during a run, but this does not mean that the sending of all
components occurs at the same time. This would not even then be the case when
all computers sustained their system times perfectly. As components can only send
out data when input data is available. Not all supermodules must necessarily have
tracks in exactly that event when the time interval elapses. Thus the arrival times
have a spread. In order to deal with this fact, the merging component waits to
proceed with its own outbound sending until it gets data from the same supermod-
ule twice. Consequently the merging component waits roughly one time interval to
aggregate the histograms from all supermodules. Finally it sends the histograms to
the displaying computer.

5.4.5 Calibration Components

The detectors are built very carefully, however, physical attributes like drift time
or gain are not constant20 and must be monitored. It is important to extract these
quantities, as they are the base for the calculation of all observables: spatial coordin-
ates, momentum and energy loss. This is of course also done by the Offline group,
but to get a first idea of the state of the detector and to be able to directly analyse
the taken data, an online calibration is useful. Indeed, it provides the possibility for
the HLT to use this calibration data at the next run already, improving the results
of the reconstruction. For this purpose an online version of the TRD calibration is
performed during the HLT reconstruction. Just like the reconstruction components,
this component interfaces offline TRD code to the HLT framework.

The calculations are based on the clusters and tracklets, which are attached
to the tracks coming from the tracker component. The following quantities are
extracted by the calibration component detector wise:

• Gain: This defines how much the primary ionisation is being amplified by the
anode wires

• Drift velocity: This is the speed by which the ionisation electrons travel
through the drift region

20This is because of changing temperature, pressure, gas mixture and so on

62 5.4 Online Reconstruction

Detector number
0 100 200 300 400 500

T
im

e
 o

ff
s

e
t

[t
b

]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Offline

HLT

(a)

Detector number
0 100 200 300 400 500

s
]

µ
 [

c
m

/
d

v

1.4

1.5

1.6

1.7

1.8

1.9

2

Offline with the average pulse height

Offline with the angle

From HLT

(b)
Detector number

0 100 200 300 400 500

G
a

in
 [

a
.u

.]

0

0.5

1

1.5

2

2.5

3

3.5
Gain after HLT calibration: only string cuts

Gain after HLT calibration: all cuts

Gain from HLT

(c)

Figure 28: Comparison of the calibration results for the HLT and offline.
Figure (a) shows the results for the time zero offest of individual detectors.
Figure (b) shows the extracted value for the drift velocity,
and figure (c) shows the gain. [RB]

5 THE DEVELOPMENT OF HLT::TRD 63

• Time zero: Together with the drift velocity this gives the distance travelled
by the drifting electrons [RB]

Once the run is terminated, the reference histograms are saved on the so called File
Exchange Server (FXS), from where they are picked up by the so called Shuttle. The
histograms are fit there and the final resulting values are saved in the GRID OCDB.
From there these values can be picked up and transferred back into the HLT’s copy
of the OCDB, to be usable for the next runs. Additionally, the first pass of the
offline reconstruction may use these values. More accurate calibration values are
generated by an iterative process utilizing subsequent reconstruction passes. The
online calibration saves one such iteration, which is by itself a very important reason
to run the online calibration, as processing power is an always scarce commodity.

Implementation

The actual implementation of the calibration and its link into the HLT TRD pro-
cessing chain is very similar to the monitoring components. Based on the tracks
coming from the tracker the calibration histogramming component generates the
reference histograms (dE/dx-spectra and average pulse height) for the detectors
through which the tracks were going. After the elapse of a time interval, a copy of
these histograms is sent to the calibration merger component. There the histograms
coming from all calibration histogramming components are merged. On the End Of
Run event (EOR) just before the component is taken down the histograms are saved
on the File Exchange Server. Due to the importance of the calibration, and even
though the processing is very similar to the monitoring, it is processed separately
giving the possibility to be used in a minimal fail save configuration.

Unlike the HLT calibration, which is performed per detector, the offline calib-
ration is segmented much finer; for groups of pads, or even single pads. However
pressure, temperature, gas mixture and high voltage have only small spatial fluctu-
ations inside one chamber. The results of the HLT calibration as compared to the
offline calibration is shown in Figure 28. These plots are a lookahead to the Quality
Assurance in 6, since the values match quite well, the reconstruction of the TRD
inside the HLT obviously has a reasonable quality.

5.4.6 Trigger Components

The previously discussed components are all necessary for the reconstruction process
itself or for calibration or monitoring. These are important goals of the HLT, however
the triggering facility is as important. For this, dedicated components are needed,
taking the output tracks from several detectors and check for specific signatures.
Only events with such signatures would be triggered and thus saved by the DAQ.

The first available and running triggering component was the TRD cluster mul-
tiplicity component. It was used during the last session of cosmic runs in autumn
2009, such that the TRD could take data without other dedicated triggering de-
tectors. It was the first test of the triggering capabilities of the HLT including a
detector. The implementation of the component itself is in fact trivial, as the com-
ponent takes the data from the clusterizer and checks for events with more than a

64 5.4 Online Reconstruction

FEP x5

CN x4

Clusterizer

Component

Tracker

Component
Cl Histo

CN x1

Calib Tr Histo
Cl Histo

Merger

Relay

Relay

x6

x1x6

x1 x1 x1

Figure 29: Data flow of the TRD components during the pp run 2010.

defined number of clusters. In this case it sends out the positive triggering answer
to the DAQ, which in turn saves the data coming from the detector.

Up to know there are no implementations of physics trigger components, such
that the first PbPb run in autumn 2010 might not make use of the triggering facility.

5.4.7 Component Placement

In order to get the highest possible performance, the components of the analysis
chain must be diligently arranged onto the available computing nodes. Therefore
the processing power of each node and the needed bandwidth for data exchange
must be taken into account. Especially as some data has more than one recipient it
must be assured that this data is still not being sent out twice. The placement of
the components on the available nodes is set up via XML configuration files, which
are read in by the HLT framework during the initialization of the run. In Figure
29 an overview of the organization of the HLT TRD components during the pp run
2010 is shown.

The data coming through the DDLs from the supermodules is first processed by
the clusterizer components on the five FEP nodes. Up to four supermodules are
processed by one computing node. However, during the 2010 pp run only seven of
the eighteen supermodules were installed, and thus only up to two supermodules
had to be processed by each node. The clusters are transferred from the FEPs to
four CN nodes where they are processed by the trackers. On each of the CNs where
trackers are executed one instance of the monitoring components is executed, as
well. It would have been too much inbound traffic for one node to take the clusters
from all FEPs, thus the cluster monitoring component cannot run only on one CN.
The histograms of the multiple cluster monitoring components must be merged, this
happens on the last CN. There, also the track histogramming component and the
calibration component process the input tracks from all trackers. The inbound rate
of the tracks is less by around a factor of two compared to the total clusters rate,

5 THE DEVELOPMENT OF HLT::TRD 65

FEP x5

CN x4

ClusterizerComponent

Tracker Component

CN x1

Calib Histo Tr Histo

Cl Histo

Merger

Cl Histo

Tr Histo

Merger
Calib Merger

x6

x1

x6

x1 x1

x1 x1 x1

Figure 30: Expected data flow of the TRD components during the PbPb run 2010.

thus it was possible run the processing components on one node only. The additional
Relay is used for splitting the incoming data on multiple outputs. Without the Relay
each subscriber would demand for its own data connection to its publisher, thus the
FEPs would have to send the same data twice through the network to the CNs: once
to the Tracker Component and once to the Cluster Histo Component. To compete
with the required data taking speed of collisions at 2000 Hz three clusterizers and
trackers were run in parallel. This includes one component redundancy.

The layout shown in Figure 29 is stable and fast enough, however the usability
of this layout is restricted to pp data only. As PbPb collisions generate much higher
data flows the layout was further optimised. The ethernet connection of the node
running Calibration and Track Histo Component would have been a bottleneck.
Figure 30 shows the expected layout for the PbPb run in autumn 2010. To circum-
vent the network bottleneck at the last CN node, here the calibration and track
histogramming is done directly at the trackers’ CN nodes. Only the histograms
are sent out to the last CN node where those are merged. Additionally the cluster
historamming component was moved from the trackers’ node to the clusterizers’ to
equalize the needed processing times. Because of the immense amount of data in
PbPb collisions, the number of components needed to process all data would exceed
the number of available processor cores vastly. Even including the upgrade to the 24
core nodes the expected processing speed would probably not reach more than about
50 Hz. This means that events must be dropped, and thus the HLT TRD could not
perform as trigger. However calibration and monitoring will still be possible.

5.4.8 Offline Compatibility Components

In order to keep the required bandwidth to a minimum, the data which is exchanged
between HLT components is saved in data containers holding only the absolutely ne-
cessary data members (Chapter 5.4.1). However, it is important to be able to check
the quality of the output data during the development. For doing so the monitoring

66 5.4 Online Reconstruction

Component Speed pp [Hz] Speed PbPb [Hz] Memory usage [MB] Input / Output size
Clusterizer 1500 66 160 2:1
Tracker 1000 16 140 1:1

Cluster Histo >2000 200 40 -
Track Histo >2000 >200 45 -
Calibration >2000 32 50 -

Table 6: The performance of the main HLT TRD components.

components may be used, but a more accurate understanding can be gained by using
simulated data. For being able to use quality assurance based on Monte Carlo (MC)
information additional data is needed to be exchanged and saved, the so called MC
labels. For this, dedicated components have been implemented, which have as input
and output format the format used by the offline reconstruction, but process the
data just like their online counterparts. The decision to use the data types of the
offline reconstruction was taken in order to not unnecessarily overcomplicate the
classes of the HLT software, and to really have perfectly compatible output data
of the online and offline reconstruction. The offline compatibility reconstruction
components inherit from the usual reconstruction components (Chapter 5.4.2) and
can thus be used by the same environment without implying other changes than the
swapping of the component itself.

Additionally, an ESD writer component was implemented. This component gets
the tracks from the offline compatibility tracker component and saves those in a file
on disk, which is organized exactly like the file used by the offline reconstruction.
This enables the use of the Quality Assurance framework to process also the data
coming from the components.

5.4.9 Summary of the Components Developed

The components developed interface the offline code to the HLT framework. By the
performance increase of the offline code, these components can be efficiently used
in the HLT cluster. The speed achieved is enough to be used during the pp run
periods with a full reconstruction. During a PbPb run periods online monitoring
and calibration is possible. Table 1 summarises the properties of the components.
The speed for pp is measured with real data, and the speed for PbPb is measured
using simulated data generated by the HIJING [HIJ] peripheral setup.

In regard of the speeds achievable for the PbPb collisions, it is worth noting that
a fast clusterizer is much more important than a fast tracker. The trackers can be
distributed on many CN nodes, however it is very usefull if the clusterizers are only
on the FEP nodes that recieve the data. Thus the amount of network traffic can be
reduced.

67

6 Quality Assurance
In order to reach the required speed of the data taking some processing steps have
to be skipped during the HLT online reconstruction. To verify that this does not
degrade the output quality too much, quality assurance tests have been performed.
A test setup for TRD data existed already for the offline reconstruction. Thus
instead of re-implementing an already existing infrastructure, emphasis was laid
on making the output of the HLT online reconstruction compatible to the offline
reconstruction (Chapter 5.4.8).

The Quality Assurance framework has two modes of operation. The first mode
demands for Monte Carlo data attached to all reconstruction entities (clusters, track-
lets and tracks). This mode gives a very detailed measurement of the absolute res-
olution. However as the additional Monte Carlo data is needed, this mode cannot
be operational for real data. As especially for real data it is crucial to get at least
a rough understanding of the achieved resolution, the second mode of the Quality
Assurance framework deals with real data. Of course the detail and accuracy of the
analysis is truncated. However, real data is to be reconstructed by the HLT, and
thus the difference in quality between the HLT reconstruction and the stand-alone
offline reconstruction of this data is decissive.

The QA analysis is performed on data files saved during the reconstruction,
which is performed on the HLT test server using the offline compatibility compon-
ents (Chapter 5.2 and Chapter 5.4.8). The components are interfaced by a compiled
macro, which accepts command line arguments. By changing the argument indic-
ating the reconstruction mode (HLT online vs. non HLT offline) all necessary re-
construction parameters describing either mode are set by the macro as arguments
to the components (Chapter 5.4.2). The QA analysis is performed separately on
the output of both reconstruction modes and the resulting QA plots may then be
compared.

The quantities of interest are spatial and momentum resolution and tracking
efficiency. However these are only definable if simulated data including Monte Carlo
information is reconstructed. By comparison of the reconstructed data with the
Monte Carlo data the following quantities are extracted:

• y and z resolution of clusters

• y and z resolution of tracklets

• ϕ resolution of tracklets

• y and z resolution of tracks

• pT resolution of tracks

• total tracking efficiency

• particle identification

To get a hint on the achieved quality in real data reconstructions auxiliary quantities
must be looked at. In this case these are the residuals of the reconstruction entities:

68 6.1 Pre-requirements

-x

y

z

tb1

tb2

tb3

(a)

y

z

co
l 0

co
l 1

co
l 2

co
l 3

co
l 4

row 0

row 1

(b)

Figure 31: The geometry of a TRD chamber in an axionometric (a) and a top view (b). The z
axis is contracted by a factor three. The -x axis points to the vertex of ALICE. The
yz-plane contains the pad plane with its tilted pads. The thick red line represents a
track going through the chamber. The thin red continuous lines are projections of
the track to the axial planes and the thin dotted lines are auxiliary lines helping to
visualize the illustration. ϕ and θ are the two track inclination angles.

• y coordinate residuals of clusters to the tracklet

• y and z coordinate residuals of clusters to the track

• y and z coordinate residuals of tracklets to the track

• ϕ residuals of tracklets to the track

Before showing the results of simulated and real data in Chapter 6.2 and 6.3 respect-
ively, some TRD specific concepts must be explained beforehand, for understanding
what the exact meaning of these observables is and how they are extracted.

6.1 Pre-requirements
The particular geometry of the TRD chambers has consequences for the Quality
Assurance. The definition of coordinates and angles is shown in Figure 31. As
the pads are very long21 typically only one pad row senses a point charge in the
amplification region. Whereas, in y direction the clusters are usually distributed
among three pads. Thus the cluster position has a relatively high accuracy in y
direction, as the signals of the three pads which compose a maximum are fit. The
z coordinate of clusters is, however, always the middle of the pad, which is the best

21typical size of 0.725× 8.5 cm2

6 QUALITY ASSURANCE 69

z

y
(a)

z

y
(b)

Figure 32: Correlation of the y and z coordinate of clusters due to the tilted pads (a) and how
it is resolved in the QA (b). The green spot represents a cluster reconstructed at the
optimal y position. However, it has a residual to the track (red spot) in y direction
due to the pad tilt.

estimate. As the readout pads are tilted, the measurement of the y coordinate of the
cluster is correlated with the (unknown) position in z direction along the pad. The
tracklets, which are a straight line fit of clusters inside one readout chamber, have
as consequence exactly the same problem. By fitting multiple tracklet of different
chambers to build the track, this issue is resolved by the fact that the chambers of a
stack have alternating pads tilt. Thus the effects of particular chambers cancel out.

In Figure 32a the principal problem of the correlation of the y and z coordinate is
sketched. The red spot represents the position at which the particle hits the detector.
The three pads which sense the ionization electrons of this particle are shown with
their individual signal strength indicated by the intensity of the blue colour. By
fitting the signals with the pad response function, the cluster is reconstructed along
the green line. The best estimate of the z coordinate is the middle of the pads, thus
the cluster is placed at the green dot. However, when calculating the y resolution
of the clusters, this position is not meaningful. The position of the real track with
respect to the pad is equally distributed along the pad. This means that even clusters
which are perfectly positioned in y direction, have nevertheless a finite residual in
this direction, which is only due to the uncertainty in the z coordinate. This effect
must be eliminated before any quality assurance can be performed.

The measured distance of a cluster to the track shall be ∆y and ∆z and the
angle of the pads’ tilt α. There is per definition no distance in x direction as it is
the independent variable. The correlation of the y and z coordinate is eliminated
by a rotation of the reconstructed cluster (green) around the track position (red),
see also Figure 32b:

∆ycorr = ∆y · cosα−∆z · sinα ≈ ∆y − α ·∆z

∆zcorr = ∆y · sinα + ∆z · cosα ≈ ∆z + α ·∆y

70 6.1 Pre-requirements

Given the fact that α is very small (2°), and usually ∆y � ∆z, there is no significant
loss in precision using the approximate formulas above.

Of course the same process must be done for the tracklet coordinates. The
tracklets have two proposes: updating the Kalman track during tracking and for
calibration. The update of the Kalman track is done using one point of the tracklet,
the so called reference point of the tracklet. Thus the space residuals of the tracklets
to the track are defined as the distances of the (tilt corrected) reference point of the
tracklet to the track, at the x coordinate of the reference point. However, as tracklets
are straight lines, it is not directly obvious how this point should be defined. There
are two definitions used: one is for tracklets which are based on clusters from one
pad row only, the other definition is used for tracklets crossing two pad rows. As
the pads have a mean length of 8.4 cm, but the readout chamber has a height of
only 3.7 cm, the former group includes most of the tracklets (about 75%). In this
case the following definition is used: The reference point of the tracklet is that point
along the tracklet, where the y uncertainty of the tracklet is minimal.

To see that this point indeed exists and how it is calculated, let’s quickly recapit-
ulate how a straight line fit is defined.
The general problem is defined by the equation

X~b = ~y , where ~b =
(
b1
b2

)
, ~y =

y1
...
yn

 , X =

1 x1
... ...
1 xn

Here xi and yi are the coordinates of the n clusters based on which the tracklet is
fit. The maximum number of clusters is determined by the number of time bins.
The parameters of the straight line fit which describes the tracklet’s spatial position
are b1 = y0 and b2 = − dy

dx
. The solution is given by

~b =
(
XTX

)−1
XT~y

The straight line fit is of the form

y (x) = y0 − x ·
dy

dx

The uncertainty of the parameters can be approximated22 by

E =
(

σ2
b1 cov (b1, b2)

cov (b2, b1) σ2
b2

)
= S

n− 2
(
XTX

)−1

where S is the sum of squared residuals. This will however cancel out during follow-
ing minimization, thus it can be disregarded here. Finally, the uncertainty of the
tracklet is given by

σ2
y(x) = σ2

y0 + x2σ2
dy/dx + 2x · cov

(
y0,

dy

dx

)
22this approximation does not include weights, in reality the weights are considered and are

given by the inverse of the cluster variance

6 QUALITY ASSURANCE 71

which has a minimum at

x∗ =
cov

(
y0,

dy
dx

)
σ2

dy/dx

Since the cluster uncertainties increase with their distance to the anode wire, this
minimum is usually in the first third of the drift region.

The described tracklet fit fits the tracklet in the xy plane. For tracklets which
cross pad rows, an additional fit in the xz plane is performed. This leads to the
coordinates at which the tracklet crosses the pad rows, which is finally the reference
point of this sort of tracklets.

6.2 QA based on Simulated Data
All information needed for the QA is gathered by calculating residuals of specific
quantities between different entities of the reconstruction to other such entities, or to
the markers of the simulation. The entities are of course the reconstructed clusters,
tracklets and tracks and the compared quantities are the attributes assigned to them
during the reconstruction. How these measured differences lead to the resulting plot
shall be explained in this Chapter.

The markers of the simulated data are the space points on the trace of the
simulated particle, at which it intersects the boundaries of the TRD chambers.
Thus for each particle there are two markers in each readout chamber it crosses.
The straight line between two space points gives the notion of direction of the MC
particle inside a chamber. All MC markers of one trace share a number which
identifies their belonging, the MC label. During the reconstruction of simulated
data, which includes these MC markers, clusters are assigned the MC label of the
particle they originate from. The label of tracklets and tracks then calculated based
on the clusters. A track might get reconstructed with clusters from different MC
particles, in this case the majority of clusters defines the label of the track. Actually
even clusters might originate from different MC particles, this is why clusters can
be assigned up to three labels.

In order to get good statistics and thus reliable results a minimal amount of data
must be processed. In this case a relatively small amount of data is already enough.
About 10000 tracks, with their tracklets and clusters of a reconstruction session are
necessary. The extraction of most quantities follows comparable principles, thus will
be shown once using the example of the cluster resolution in y direction.

Cluster Resolution in y Direction

All resolution plots are based on the difference of an attribute of the reconstructed
entity to the simulated markers. In the case of the y resolution of clusters, the
entity is the cluster and its y coordinate is the central attribute. A histogram is
filled containing the y distance of the cluster to the MC particle at the x position
of the cluster. However, as we have seen in the previous Chapter, not the raw y
distance must be observed, it must first be corrected for the pad tilt. The correction
is based on the trace of the MC particle, as it is the reference for all measurements
in this part of the QA.

72 6.2 QA based on Simulated Data

(a)
 y [cm]Δ

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

210

310

410

510

 a
.u

.

Entries 1185253
Mean 0.0007155
RMS 0.03727

(b)

Figure 33: (a) Distribution of the tilt corrected distance of cluster to the MC particle.
(b) The projection of the red marked slice and its Gaussian fit.

A histogram of this distance distribution is shown in Figure 33a. The tilt correc-
ted distance in y direction is plotted against tanϕ, where ϕ is the inclination of the
MC particle in y direction. The histogram is then divided into tanϕ-slices, and each
is projected onto the ordinate axis. The mean of this resulting distribution should be
zero, as it is expected that (including all corrections during the reconstruction) the
clusters are normally distributed around the particle trace. The root mean square
(RMS), or sigma, of the distribution represents the resolution. These two quantities,
the mean and the sigma, are finally shown in the resulting plot. Thus this contains
the most important properties of the distribution.

Figure 34 shows the plot for the HLT reconstruction and the offline stand-alone
TRD reconstruction. It can be observed that the data points are exactly on top of
each other. This is expected, as the tiny quality-to-speed trade-off which has been
included into the clusterizer during the HLT reconstruction can show up only at the
tracklet level. The positions and errors of the clusters are calculated by the HLT
including all higher order corrections.

The curve of the sigmas has a minimum at the Lorentz angle αL. This is the
angle at which clusters drift towards the pad plane, due to the interaction of the
electric field of the TRD readout chamber and the magnetic field of the L3 magnet
(Figure 35b). Electrons originating from particle traces inclined differently, have a
reduced resolution due to the Landau distribution of the charge deposition along the
ionizing particle trace. Around a big charge deposition other near smaller charges
are shifted (Figure 35a). This effect is proportional to tan (ϕ− αL). In fact many
effects concerning the resolution are proportional to the tangent of the inclination
angles, both ϕ and θ. The reason is that the length of the projection of the particle’s
trajectory during the elapse of a time interval is proportional to the tangents of the
inclination.

6 QUALITY ASSURANCE 73

)φtg(
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

m
]

μ
y

[

0

100

200

300

400

500

600

700 offline SA sigma (hidden)

offline SA mean (hidden)

HLT sigma

HLT mean

Figure 34: Resolution of the clusters in y direction, as compared with simulated data.

200

400

600

800

A
m

pl
itu

de

-1.5

-1

-0.5

0

0 5 10 15
Time Bin

r φ
 (c

m
)

0 5 10 15
Time Bin

(a) (b)

Figure 35: (a) Cluster charges are Landau distributed: big charges shift neighbours. [ATDR2]
(b) Ionisation electrons are drifting at an angle 90°-αL to the pad plane due to the
interaction of the magnetic and electric field.

74 6.2 QA based on Simulated Data

 z [cm]Δ
-4 -2 0 2 4

0

50k

100k

150k

200k

250k

300k

350k

 a.u.

Entries 1.617393e+07
Mean -0.001242

RMS 2.424

non HLT

HLT
Entries 1.629968e+07
Mean -0.001802

RMS 2.433

(a)

356k

358k

360k

362k

364k

366k

368k

 z [cm]Δ
-6 -4 -2

0

2k

4k

6k

8k

10k

non HLT

HLT

0 2 4 6

 a.u.

(b)

Figure 36: Distribution of the cluster z coordinate residuals to the MC trace (a) and two zoom
ins of the bottom and top part (b).

Cluster Resolution in z Direction

Due to the geometry, the resolution in z direction is very limited. For clusters,
the resolution is given only by the pad length, which ranges from 7.5 to 9 cm with
a mean value of 8.4 cm. Figure 36 shows the distribution of the distance of tilt
corrected z coordinate of the cluster to the z coordinate of the MC particle. As in
this case there is anyhow no dependency on tan (θ), it is much more illustrative to
see the raw distribution.

As expected, the residuals are equally distributed along the whole pad length
(maximal deviation is about 2%), since clusters are reconstructed at the middle of
the pad but the particle might hit the pad at any point. The RMS of the distri-
bution is very well in line with the expected value, due to the mean pad length:
8.4 cm/

√
12 = 2.42 cm. The plot based on the HLT reconstruction differs slightly

from the one of the offline stand-alone reconstruction, as seen in the zoomed in
plots. This difference is due to the tracking. The MC label of the track is calculated
out of the MC labels of all clusters, and then all distances of the clusters are calcu-
lated to this MC particle. The differences are due to clusters which are assigned to
wrong tracks. Obviously the HLT reconstruction has a higher count of misassigned
clusters.

Tracklet Resolution in y Direction

The same procedure as it is used for clusters can be also applied to tracklets. Here,
however, the distances are measured from the tilt corrected tracklet reference point
to the MC trace. Thus Figure 37a shows the mean and sigma of the distribution

6 QUALITY ASSURANCE 75

)φtg(
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

m
]

μ
y

[

0

100

200

300

400

500

600
offline SA sigma

offline SA mean

HLT sigma

HLT mean

(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-15

-10

-5

0

5

10

15

20

25

z
[m

m
]

)θtg(

HLT sigma
HLT mean
HLT sigma RC
HLT mean RC

off SA sigma (hidden)
off SA mean
off SA sigma RC
off SA mean RC

(b)

Figure 37: Resolution of the tracklets as compared with simulated data in y direction (a) and in
z direction (b).

height h

pad length l

θ

z

x

leffb

tracklet reference point

htrp

(a)
)θtg(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

m
]

μ
z

[

15000

10000

-5000

0

5000

10000

15000

20000

25000

30000

 / ndf 2χ 1928 / 48
const 111.5± 8.522e+04
slope 205.9± 3.253e+04

Fit of Sigma Curve

 / ndf 2χ 5347 / 48
const 22.32± -2.253
slope 41.22± -1.056e+04

Fit of Mean Curve

(b)

Figure 38: (a) Illustration of geometry in the x-z plane of a readout pad.
(b) Fits on the mean and sigma curves of Figure 37b for tracklets not crossing pad
rows.

76 6.2 QA based on Simulated Data

)θtg(
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

offline SA

HLT

a.
u.

(a)
)θtg(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
1000

1500

2000

2500

3000

3500

4000

4500

5000

offline SA

HLT

a.
u.

(b)

Figure 39: (a) Probability of row crossing tracklets as function of tan θ.
(b) Number of reconstructed tracks as function of tan θ.

of this distance versus the tangent ϕ of the MC trace. As expected, the resolution
of the tracklets is better than that of individual clusters, as the fit of one tracklet
includes many clusters. The general look of the plot is also comparable, as tracklets
from a tanϕ-region should include only clusters from the same region.

Tracklet Resolution in z Direction

As already mentioned, the tracklets are handled differently, depending on whether
they cross the pad rows or not. The additional fit in the xz-plane, which is per-
formed in case the pad row is crossed, increases the resolution of the z coordinate
significantly, as it can be seen in Figure 37b. Of course, the probability of having a
row crossing tracklet drops towards θ = 0, this is shown in Figure 39a. Additionally,
the running mean is also removed completely for those tracklets, the spikes that
remain correspond to regions of low acceptance, which is shown in Figure 39b by
the number of reconstructed tracks. The loss in precision of the HLT reconstruc-
tion in case of the row crossing tracklets, can be attributed mainly to the skipped
iterative procedure of improving the tracklet quality. As explained in Chapter 5.3.3
the procedure is skipped since it is very expensive in terms of processing time.

The reason for the running mean of the tracklets not crossing pad rows is the
position of the tracklet reference point. This point is usually in the first third of the
drift region, and thus the z position is biased for inclined tracks. The systematic
decrease of the sigma for these tracklets is also due to the inclination of the track in
the readout chamber. The illustration in Figure 38a shows the situation. A track
which is inclined at the angle θ and does not cross pad rows, cannot be outside of
the length leff . Thus the resolution of the tracklet increases with increasing angle.
However, the position of the tracklet reference point along the x axis is typically
not in the middle of the drift region but in its first third, thus in proximity to the
amplification region. In the z direction the tracklet reference point is along the

6 QUALITY ASSURANCE 77

)φtg(
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

 [m
ra

d]
φ

-20

0

20

40

60

80

100
offline SA sigma

offline SA mean

HLT sigma

HLT mean

Figure 40: Resolution of the tracklet inclination, as compared with simulated data.

clusters, thus exactly in the middle of the pad. This combination of being in the
middle of the pad along z but not in the middle of the chamber along x, generates
a bias b which linearly depends on the tangents of track inclination. The resolution
curve can be described by

σ (θ) = l − h · |tan θ|√
12

, (3)

where l is the pad length, h is the height of the drift region. The length leff shown
in Figure 38a equals to h · |tan θ|. The fit of Equation 3 on the sigma curve is shown
in Figure 38b. The return value of 8.522 cm for the pad length matches the value of
8.4 cm for the mean pad length quite well. The return value of 3.253 cm represents
the height of the drift region, which is in reality 3 cm. The linear fit of the mean
curve, which is also shown in Figure 38b returns value of 1.056 cm for the bias for
tracks with an inclination of 45 degree. With these values, it is possible to calculate
the mean x coordinate of the tracklet reference point using this expression

htrp = h

2 − b (4)

This gives a value of 0.5705 ±0.0113 cm for the mean height of the tracklet reference
point above the amplification region. This is indeed inside the first third of the drift
region.

Tracklet ϕ-resolution

Increased uncertainties of the y coordinate of the clusters not only lead to increased
uncertainties in the y coordinate of the tracklets, but also in the inclination angle
along this coordinate: the ϕ angle. Thus the systematic increase of the sigma to
the edges of Figure 40. The visible loss in resolution for the HLT reconstruction
has many causes, but the most important one is again the skipping of the multiple

78 6.2 QA based on Simulated Data

)φtg(
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

m
]

μ
y

[

-200

0

200

400

600

800

offline SA sigma

offline SA mean

HLT sigma

HLT mean

(a)
)θtg(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

z
[m

m
]

-5

0

5

10

15

20

25

30
offline SA sigma

offline SA mean

HLT sigma

HLT mean

(b)

Figure 41: Resolution of the tracks at the last readout chamber as compared with simulated data
in y direction (a) and in z direction (b).

tracklet fits. Additionally, the simplified error propagation of the clusters towards
the tracklet also has an effect.

What may also have a small effect is the skipped count of active pads neighbour-
ing the clusters. As explained in Chapter 5.3.2, this number is used by the tracklet
fit to artificially decrease the weight of the respective cluster if it has more than five
active pads around. This is based on the knowledge that such configurations are
extremely unlikely and could indicate a detection flaw. For simulated data this is
of course not the case, but still such clusters might be originating from two crossing
traces. In this case a charge sharing of the two neighbouring clusters is taken into
account, however the clusters might still influence each other.

The running mean is a feature, which is not understood. But since offline stand-
alone and HLT behave the same, it is not due to the altered HLT reconstruction.

Track Resolution in y Direction

The QA procedure for tracks is in principle exactly the same as for clusters or
tracklets. However, for tracks no tilt correction is needed, as the alternation of
tilting angles in subsequent chambers of a stack should cancel out. Each track is
compared in each chamber to the MC data separately. Thus for tracks there is
an output plot for each of the (mostly) six chambers the particle passed through.
The resolution at chambers higher in the stack is better, since in the stand-alone
reconstruction the tracklets are updating the Kalman filter beginning with the lowest
chamber. This is why in the full offline reconstruction tracks are fit multiple times,
from inward to outward and back.

As explained in Chapter 5.3.3 the helix fit based on the tracklets is different
in the HLT reconstruction. There, a helix constrained to the origin of the ALICE
coordinate system is used. This is due to the fact, that the bulk of the tracks is

6 QUALITY ASSURANCE 79

 [GeV/c]
t

p
-110·4-110·3 1 2 3 4 5 6 7

 [%
]

M
C

t
)/

p
M

C
t

-p
RE

C

t
(p

-20

-10

0

10

20

30

40
offline SA sigma

offline SA mean

HLT sigma

HLT mean

Figure 42: pT -resolution of the tracks, as compared with simulated data.

coming directly from this direction. Only tracks originating in conversions inside
the TRD have no prolongations to the primary vertex, and these are not of high
interest. Thus this approximation does not influence the physics result too much.

Looking at Figure 41a, however, clear differences can be seen. The unconstrained
helix fit used in the offline reconstruction seems to cause a deterioration of the
resolution.

Track Resolution in z Direction

Figure 41b shows the resolution of the z coordinate of the track. As expected, it is
better than the resolution of single tracklets. The position of the spikes corresponds
to regions of low acceptance (Figure 39b). Obviously on track level the running
mean of the tracklets which do not cross pad rows (shown in Figure 37b) can be
compensated by the track fit.

The fact that the HLT has again a better resolution than the offline stand-alone
reconstruction is also due to the different helix fits.

Track pT -resolution

An important measurement of the TRD is the transverse momentum pT . In Figure
42 it is again clearly visible, that the two helix fits behave differently. In the very low
pT region, the resolution of the offline stand-alone reconstruction performs slightly
better. Above pT ≈ 1 GeV/c the HLT reconstruction with its constrained helix
fit starts to be superior, and over about pT ≈ 3 GeV/c the offline stand-alone fit
degrades substantially. However, for the offline reconstruction including all detectors
the TRD stand-alone tracker is used only for clusters which were not tracked during
the barrel tracking. Thus all clusters belonging to tracks with prolongations into
the inner detectors have been removed at this stage, and only tracks originating in
conversions inside the TRD remain to be tracked. These tracks usually do not have
a high pT and thus the impact of this issue is not very big.

80 6.2 QA based on Simulated Data

p [GeV/c]
2 4 6 8 10

Effi
ci

en
cy

0.75

0.8

0.85

0.9

0.95

1

1.05

offline SA

HLT

Figure 43: Tracking efficiency.

Tracking Efficiency

An algorithm must not only be precise, it must also be efficient. For the reconstruc-
tion this means that not only the quality of the tracks is of importance but these
tracks must really be found with high efficiency. Fake tracks, i.e. tracks which are
reconstructed even though there was actually no particle in the detector, or tracks
which are not found at all are very hard or impossible to handle afterwards on event
by event basis.

Tracking efficiency is defined by found tracks / findable tracks. Only tracks
meeting the following criteria are considered:

• At least 4 of the 6 chambers are hit

• total momentum > 0.2 GeV/c

• ϕ, θ < 50°

A track is declared found if it has a MC label assigned which exists for the corres-
ponding event. The result is shown in Figure 43. The total dependency on the total
momentum p is expected, as tracks with low momentum are very tight helices and
these are of course harder to find. The decisive quantity is not pT , as for example
tracks with a low pT but a high total momentum are much straighter inside one
TRD stack than tracks with the same pT but a low total momentum. The reason
that the HLT reconstruction has a lower efficiency is a combination of the following
performance increasing measures: the lower number of used seeding configurations,
the skipped refits of tracklets, and the thus skipped quality sorting of the seeding
candidates. (for more details, see Chapter 5.3.3).

Particle Identification

The discrimination of pions and electrons by making use of the emitted transition
radiation of the electrons is the unique feature of the TRD. The design specification

6 QUALITY ASSURANCE 81

p [GeV/c]

-110·5 1 2 3 4 5 6 7 8 9 10

 [%
]

πε

-210

-110

1

offline SA

HLT

Figure 44: Pion contamination at an electron electron efficiency of 90%.

of the TRD was defined as being 1% pion contamination at an electron identification
efficiency of 90%. The actual result of the online and stand-alone offline TRD
reconstruction can be seen in Figure 44. The observable degradation of the particle
identification can be explained by the less accurate tracking. The multiple refits
of tracklets and track candidates are very time consuming and have to be skipped.
The procedure providing the particle identification is not changed, but already a
few mismatched clusters due to the less accurate tracking can harm.

6.3 QA based on real data
All quality assurance plot shown up to now are only producible with simulated data.
To be able to check the quality of real data, only information available there may
be used. Thus only residuals between the reconstructed entities themselves can
be calculated, which means that thereby only relative measurements are possible.
However, by comparing these relative measurements of simulated and real data,
and including the information based on the MC markers of the simulated data, the
quality of the real data can be estimated.

What follows is a comparison of plots extracted from the same simulated data
as in the previous chapter, with real data from the pp run 126405.

Cluster to Tracklet Residuals in y Direction

Clusters are also for the real data analysis the starting point. As clusters are the first
reconstruction entity being calculated, anything else is based on them. Additionally,
the information needed by the clusterizer to calculate the clusters is from a very small
region of the detector, thus the calculations are very straight forward and should be
less prone to errors than for the other entities.

The residuals of clusters to tracklets can reveal problems of the tracklet fit and,
since this is a relative measurement, also of the clusters themselves. Figure 45 shows

82 6.3 QA based on real data

)φtg(
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

m
]

μ
y

[

0

100

200

300

400

500

600

700

800

900

offline SA sigma

offline SA mean

HLT sigma

HLT mean

(a)
)φtg(

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
m

]
μ

y
[

0

100

200

300

400

500

600

700

800

900

offline SA sigma

offline SA mean

HLT sigma

HLT mean

(b)

Figure 45: Residuals of the y coordinate of clusters to tracklets, for simulated data (a) and real
data (b).

the results for the simulated data and the real data. The first obvious difference
is the running direction of the sigma curve. This difference is due to the magnetic
field which, in this run, had the inverse polarity. This curve is also somewhat
higher for the real data, which means that the distribution of the residuals is wider.
Additionally the dip of the curve at the Lorentz angle is less pronounced in the real
data plot. This could be due to an increased mixing of clusters from one tanϕ-region
to tracklets of another tanϕ-regions, i.e. misassignment of clusters to tracklets.

In general, the plot of the real data is comparable to the plot of the simulated
data, thus, most probably, no dramatic errors are introduced during the tracklet fit
of the real data.

The difference of the sigma curves of the HLT and offline reconstruction in case
of the simulated data is surprising. As Figure 34 and Figure 37a show, that neither
clusters nor tracklets have a worse resolution in the HLT reconstruction. This feature
can be seen on all following plots and could be due to an increased misassignment
of clusters to tracklets and subsequently of tracklets to tracks.

Cluster to Track Residuals in y Direction

The measurement of the residuals of clusters to tracks is very important, since tracks
are the most important entity. As tracks are based on multiple readout chambers,
the cluster coordinates must be corrected for the pad tilt before any calculation is
done. The reference for this correction is the reconstructed track.

Figure 46 shows the resulting properties of the distribution of the tilt corrected
residuals of clusters to tracks. First of all, the general height of the sigma curves is
comparable, but the dip of the curve is not very pronounced in the real data plot.
In fact this seems plausible, as this matches with the observation of the residuals of
clusters to tracklets. However, looking at the mean curves a real problem shows up

6 QUALITY ASSURANCE 83

)φtg(
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

m
]

μ
y

[

-400

-200

0

200

400

600

800

1000

1200

1400 offline SA sigma

offline SA mean

HLT sigma

HLT mean

(a)
)φtg(

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

m
]

μ
y

[

-400

-200

0

200

400

600

800

1000

1200

1400

offine SA sigma

offline SA mean

HLT sigma

HLT mean

(b)

Figure 46: Residuals of the y coordinate of clusters to tracks, for simulated data (a) and real
data (b).

for the real data here: the mean is systematically shifted. By the fact that there
is no hint about such a serious problem in the cluster to tracklet residuals, it could
have been argued that the errors are introduced during the track fitting. But we
will see that this is improbable. The residuals of tracklets to tracks will give more
information on this issue.

Assuming that the reconstruction precision is unchanged for individual clusters,
the comparable height of the sigma curves of the real and simulated data indicates
that the precision of the reconstructed tracks is also comparable (apart from the
systematic shift, of course).

Cluster to Track Residuals in z Direction

In the context of the problems with the residuals of the y coordinate, it is worth
looking at the residuals in the z coordinate. However, Figure 47 gives no evidence
for any kind of problems in the z direction, as there are no big differences of the plots
for simulated and real data. Especially important is that the mean curves have no
systematic shift. The sigma curves are all higher than the expected 2.4 cm, which
means that clusters of different pad rows are wrongly assigned to tracks. The dip
in the middle is expected, as tracks exactly at mid-rapidity have the possibility to
hit all chambers at the same pad row. In this case the track will be reconstructed
exactly along the clusters and then the residuals are zero. The offline reconstruction
of the simulated data, however, does not show this sudden drop of the sigma curve.
This feature is not understood up to now.

The distributions for the real and simulated data are very similar, thus the
achieved precision of the real data reconstruction should also be similar.

84 6.3 QA based on real data

)θtg(
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

z
[m

m
]

-10

-5

0

5

10

15

20

25

30

35

offline SA sigma

offline SA mean

HLT sigma

HLT mean

(a)
)θtg(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

z
[m

m
]

-10

-5

0

5

10

15

20

25

30

35

offline SA sigma

offline SA mean

HLT sigma

HLT mean

(b)

Figure 47: Residuals of the z coordinate of clusters to tracks, for simulated data (a) and real
data (b).

)φtg(
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

m
]

μ
y

[

-200

0

200

400

600

800 offline SA sigma

offline SA mean

HLT sigma

HLT mean

(a)
)φtg(

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

m
]

μ
y

[

-400

-200

0

200

400

600

800

offline SA sigma

offline SA mean

HLT sigma

HLT mean

(b)

Figure 48: Residuals of the y coordinate of tracklets to tracks, for simulated data (a) and real
data (b)

6 QUALITY ASSURANCE 85

)θtg(
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

z
[m

m
]

-10

-5

0

5

10

15

20

25

30

same legend as on the right

(a)
)θtg(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-15

-10

-5

0

5

10

15

20

25

z
[m

m
]

off SA sigma
off SA mean
off SA sigma RC
off SA mean RC
HLT sigma
HLT mean
HLT sigma RC
HLT mean RC

(b)

Figure 49: Residuals of the z coordinate of tracklets to tracks, for simulated data (a) and real
data (b)

Tracklet to Track Residuals in y Direction

Concerning the problem of the y residuals of clusters to tracks in case of the real
data reconstruction, the measurement of the residuals of tracklets to tracks can give
valuable information. Figure 48 reveals that the same amount of systematic shift as
previously seen in Figure 46 is present. This could be another hint that the actual
error is introduced during the fit of the track. But this possibility is mainly ruled
out by the findings on the ϕ angle.

Tracklet to Track Residuals in z Direction

Figure 49 shows the properties of the distribution of the tracklet to track residuals
in the z coordinate. The improvement in precision for the pad crossing tracklets can
be clearly seen by comparing the sigma curves.

The running mean of the tracklets which do not cross pad rows is the result of the
compensation of the running mean in Figure 37b at the track level. The running
mean for the pad crossing tracklets of the real data reconstruction is, however,
surprising. Differential analysis has shown that this issue has no connection to the
problem of the shifted mean of the y distributions. The effect of this issue to the
track is also uncertain, since Figure 47 does not show any signs of problems.

Tracklet to Track Residuals in ϕ

Figure 50 shows the results for the tracklet to track residuals for the angle ϕ. As
for the plots of the y residuals, the mean of the distribution for the real data has a
worrying systematic shift. The root of both issues is most probably the same. The
shift of about 50 mrad is of the same order as the 8 degree of the Lorentz angle, thus

86 6.3 QA based on real data

)φtg(
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

 [m
ra

d]
φ

-50

0

50

100

150

offline SA sigma

offline SA mean

HLT sigma

HLT mean

(a)
)φtg(

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

 [m
ra

d]
φ

-50

0

50

100

150

offline SA sigma

offline SA mean

HLT sigma

HLT mean

(b)

Figure 50: Residuals of the ϕ angle of tracklets to tracks, for simulated data (a) and real data
(b)

)φtg(
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

m
]

μ
y

[

-800

-600

-400

-200

0

200

400

600

800

1000

1200

1400

SigmaMean
time bin 2
time bin 6
time bin 10
time bin 14
time bin 18
time bin 22

time bin 2
time bin 6
time bin 10
time bin 14
time bin 18
time bin 22

(a)
)φtg(

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

m
]

μ
y

[

-800

-600

-400

-200

0

200

400

600

800

1000

1200

1400

same legend as on the left

(b)

Figure 51: Residuals of the y coordinate of clusters to tracks per time bin, for simulated data (a)
and real data (b). As the plots for the HLT reconstruction and for the offline stand-
alone reconstruction look almost identical, only the plots of the offline reconstruction
are shown.

6 QUALITY ASSURANCE 87

the first step to find the reason for this problem, was to double check the correction
for the Lorentz angle.

If the correction is not applied, the expectation would be that clusters at different
time bins have different residuals to the track (Figure 35b). Indeed, exactly this
symptom was found, as shown in Figure 51. This figure corresponds to Figure 46,
but here an independent histogram was generated for each time bin. It can be
seen that the mean systematically moves depending on the time bin. This finding
means that the problem is very likely on the cluster level. It would be possible to
reconstruct a track with a systematic shift of 200µm but it is very unlikely that a
track crossing a whole stack has a systematic shift of 8 degree. However, no evidence
of a wrong calculation during the real time reconstruction was found, until now.

Apart from this problem, which both, the stand-alone TRD reconstruction and
the HLT TRD reconstruction are affected of, the HLT reconstruction seems to have
a good quality. The plots for the HLT reconstruction are usually very similar to the
ones of the stand-alone online reconstruction. This conclusion is also backed by the
good results of the online calibration (Figure 28).

88

89

7 Summary
Current experiments at the LHC try to find answers for very fundamental questions
about our universe, by endeavouring the sub microscopic environment. In particular,
ALICE searches for the properties of the QGP, which is the state our universe was in
during its first microsecond. This will be done in ion-ion collisions at energies never
reached before in controlled surroundings. The low probability of many signatures
demands for high collision rates, which leads to huge amounts of data. For being able
to cope with this, experiments include multiple trigger levels, activating detectors
and data taking only for interesting events.

The ALICE experiments provides an additional triggering layer, called HLT.
Here a full online reconstruction of the data enables online monitoring of the data,
and online calibration of the detectors. Based on an online analysis of the recon-
structed data, the HLT can steer the data taking and add additional information to
provide a pre organisation.

This thesis presented the development of the code, interfacing the TRD offline
reconstruction and calibration algorithms to the HLT framework. For being able
to follow with the speed of the detectors, the TRD offline algorithms have been
significantly accelerated, such that the processing can be performed on a reasonable
number of processors. For this dedicated tools were used to detect bottlenecks.

During the process of increasing the processing performance the resulting quality
needed to be monitored closely, as the physical information must not be lost. The
good online calibration results of the proton-proton runs show that this goal was
mainly reached.

There are still efforts to be done for understanding the problem revealed by the
Quality Assurance for the real data, and, additionally, preparations of the setup for
the lead-lead runs are to be finished.

90

91

Text Segment

Sta!c Data

(ini!alised)

Sta!c Data

(unini!alised)

Heap

Stack Segment

Data Segment

reserved
0x000000000000

0x000000400000

0x7FFFFFFFFFFFF

Figure 52: User-level memory layout in Unix-like operating systems

8 Appendix

8.1 Memory Management on Modern Computers
For the actual implementation of the code, and thus for the success of the project, the
understanding of memory and how it is used by the hardware was a major necessity,
thus the appendix is devoted to this subject. It is an aggregate of [PICA, LPE] and
my own experiences with the GCC compiler (versions 3.4 to 4.4).

8.1.1 Static and Dynamic Memory Allocation

The memory of computers as seen by the running executed software is not a mono-
lithic block, but it is substructured. As simplification let’s first assume that the
computer runs only one programme at a time. Figure 52 shows the typical user-
level memory layout typically used in current Unix-like operating systems. Listing
4 shows examples for the memory allocation procedures which are discussed in the
following.

Processors process data using instructions telling them how to process that data.
The text segment contains the instructions describing the executed programme.
From here the processor is fed with the next instructions to perform. Data is saved
within the data segment, which again has a substructure.

Variables, which are being defined within the scope of the currently processed
instructions, are saved on the stack. The stack is a Last-In-First-Out (LIFO) struc-
ture. It starts at the maximal address and grows downwards. By entering a new
scope, the local variables of this scope are pushed onto the stack. Leaving the scope
is accompanied with pulling the scope’s data out of the stack. Push and pull ac-
tually only reserve or free memory and update the processor’s stack pointer. This

92 8.1 Memory Management on Modern Computers

1 { // enter the scope and push variable i onto the stack
int i = 123; // initialise the variable by the immediate 123

} // leave the scope and pull variable i out of the stack

5 { // enter the scope and push arrays arr and brr onto the stack
int arr[3] = { 0, 1, 2 }; // copy the immediates 0, 1, 2 one by one
int brr[1000] = { 0, 1 , ... }; // copy the predefined array from static memory
static int crr[3] = { 0, 1, 2 }; // nothing to do, crr points to static memory

} // leave the scope and pull arr and brr out of the stack
10

{ // enter the scope and push pointers arr and brr onto the stack
int* arr = new int[10]; // demand for heap memory
int* brr = new int[10]; // demand for heap memory
delete [] arr; // free the heap memory used by arr

15 } // leave the scope and pull arr and brr out of the stack
// warning: the heap used by brr was not freed
// and thus a memory leak was produced

Listing 4: Examples of memory allocation during run-time

points to the top of stack, which is either the last full or the first empty address at
the lower edge of the stack. The variables pushed, however, usually also need to be
initialised to some values needed. In the simplest case, the variable shall be initial-
ised to a number known at compilation time. This number is called an immediate
and is saved directly together with the instruction used for initialising the variable,
thus ending up in the text segment.

When a local variable describes a data array with known size at compilation
time, the whole array is pushed onto the stack, when entering the scope. However,
the array is not initialised, thus the values are arbitrary. Predefined arrays may be
saved either in the static data segment, or as immediates in the text segment. The
compiler will choose; typically the decision will be based on the size of the array.
Up on entering the scope, and after pushing the array onto the stack, the array
of the static data segment is copied from there onto the stack or each element is
initialised by its own using the immediates. This copying may or may not be desired,
depending on the need. In case no copying is needed, the data array of the static
memory may be used directly, thus also no change of the stack is needed.

The static data segment contains all global variables. It, however, differentiates
between initialised data, like the predefined array from the previous example, or
uninitialised data: This is, for example, a global array that is not predefined.

There are cases were the size of an array is unknown at compilation time. In
this case the procedure using the stack cannot work, as push and pull are controlled
by the compiler during the compilation. However, in this case it is unknown how
many push or pull instructions to use. Thus, this sort of arrays must be dynamically
allocated, and this is done using the so called heap. The management of this memory
segment is not controlled by the kernel and is thus highly dependent on the used
programming language. However, independent of the actual implementation, there
are general problems concerning dynamic memory allocation. Firstly, it is possible
to call for too much memory during run time, more than is physically available.

8 APPENDIX 93

This can happen in case of memory leaks. Secondly, the frequent allocation and
deallocation of memory with different sizes can lead to a fragmentation of the heap.
Eventually, although enough space was available for the next allocation, it could
fail in case free space was not contiguous. Even if the heap management includes
garbage collection or memory defragmentation, it is useful to have the dynamically
allocated arrays as fixed as possible during the run time.

The data, which is needed to be loaded in memory at the startup of the ex-
ecutable, must be saved in the executable file. Thus the executable file contains
all information strictly needed: It has a text section, where the text segment is
saved, and a data section, containing the initialised static data segment. The other
segments are not saved on disk.

8.1.2 Data Alignment

The smallest amount of information is saved in one bit. This is what a boolean
effectively saves: yes or no. However, modern processors cannot access data bit-
wise, the addresses are byte-wise. Thus the smallest addressable datum has a size
of one byte, which is typically 8 bits. Retrieving a datum with a size of one byte
from the memory to the processor is done by one dedicated instruction. Modern
processors can, however, process data of bigger sizes, up to 64 bits. Thus there are
additional instructions for loading data with sizes of 16, 32 or 64 bits from memory.
Depending on the computing architecture, these instructions require that the loaded
data is saved at addresses divisible by the size to be loaded. This is than called an
aligned memory access. Unaligned memory accesses can lead to poorly performing
code, or even run-time errors.

8.1.3 Virtual Memory

Computers can run multiple processes at a time. For example, the same executable
may be started twice, and both processes will be processed concurrently. How-
ever, both executables will use the same addresses for their global data, as these
addresses where hard coded during the linking process. If the addresses used by
the programmes were the physical addresses of the memory, the processes would
mutually overwrite their data. This could lead to corruption and would be a giant
security flaw. Obviously there is a mechanism to prevent this.

The operating system provides each process with its own address space, which
is mapped onto physical memory. The mapping is done such, that addresses to
memory of all running processes are disjunct23. This memory management is called
virtual memory. Thus, to remain at the example of the two processes, each process
accesses its global data at the same address, but these addresses are mapped onto
different physical memory regions23.

The concept of virtual memory has the advantage, that the process’ address
space can also be mapped onto disk storage, or any other device. Additionally, in
case not enough memory is available the operating system can decide to remap the
address space of a certain process, from memory to the disk storage.

23at the very least, this is true for writeable memory after processes try to alter it

94 8.1 Memory Management on Modern Computers

8.1.4 Inter-Process Communication

As mentioned in the previous chapter; by concept, virtual memory cuts direct inter-
process communication through common memory space. As this is, however, an
important feature, Unix systems provide operating system assistance. There are
multiple solutions for many different circumstances. The ones which are used by the
HLT are: shared memory (shm), and named pipes (a.k.a. FIFO’s).

The usage of pipes is widespread in the Unix-like operating systems. To make
an example:
$ ls | grep m

The “|” is called a pipe, and forwards the output from “ls” to “grep”. Pipes can be
given unique names. In this case these pipes are called named pipes. Thus otherwise
unrelated processes may attach to these pipes and use them for communication.
Like that, the descriptors are exchanged between HLT components[TSD].

Shared memory provides a block of memory, dedicated for the data exchange
between processes, which deliberately connect to this block. Additionally the memory
block is protected by access permission, set during its creation. This is how HLT
components exchange all data except the descriptors [TSD].

LIST OF FIGURES 95

List of Figures
1 Phase diagram of quarks and gluons 6
2 The CERN accelerator complex . 8
3 The ALICE Experiment and its detectors 10
4 ALICE online systems are steered by ECS 12
5 Cuts through a TRD readout chamber 15
6 The TRD in its support structure . 17
7 Scanning microscope images of the radiator materials 18
8 Average pulse height of different particles 19
9 DAQ principle overview . 22
10 LDC processing the HLT triggering decisions 23
11 Data exchange between components 25
12 State diagram of the HLT . 27
13 Screenshot of KCachegrind . 30
14 Development cycle of HLT components 33
15 Dataflow between Cluster Finder, Raw Reader and Track Finder . . . 34
16 Processing time of the clusterizer for one supermodule (I) 37
17 Tail cancellation of the signal of a readout pad 38
18 Flowchart of the data inside the clusterizer 42
19 Processing time of the clusterizer for one supermodule (II) 44
20 Flowchart of the data inside the tracker 45
21 Particles in the TPC . 46
22 Two predefined seeding chamber configurations 47
23 Processing time of the tracker with offline and online configuration . . 50
24 The principle of HLT processing . 51
25 Work flow of HLT components . 56
26 Flowchart of the data during an offline and a HLT reconstruction . . 57
27 Screenshot of the TRD online histograms during reconstruction . . . 59
28 Comparison of the calibration results for the HLT and offline 62
29 Data flow of the TRD components during the pp run 2010 64
30 Expected data flow of the TRD components during the PbPb run 2010 65
31 The Geometry of a TRD Chamber 68
32 Correlation of the y and z coordinate due to pad tilt 69
33 Distribution of the Cluster residuals 72
34 Resolution of the clusters in y direction 73
35 Landau distribution of cluster charges and Lorentz deviation of drift-

ing electrons . 73
36 Distribution of the cluster z coordinate residuals to the MC trace . . 74
37 Resolution of the tracklets in y direction 75
38 Illustration of the increase in resolution due to track inclination . . . 75
39 Acceptance and probability of row crossing tracklets as function of

tan θ . 76
40 Resolution of the tracklet inclination angle 77
41 Resolution of the tracks in y direction 78
42 pT -resolution of the tracks . 79

96 LIST OF TABLES

43 Tracking efficiency . 80
44 Pion contamination at an electron electron efficiency of 90%. 81
45 Residuals of the y coordinate of clusters to tracklets 82
46 Residuals of the y coordinate of clusters to tracks 83
47 Residuals of the z coordinate of clusters to tracks 84
48 Residuals of the y coordinate of tracklets to tracks 84
49 Residuals of the z coordinate of tracklets to tracks 85
50 Residuals of the ϕ angle of tracklets to tracks 86
51 Residuals of the y coordinate of clusters to tracks per time bin 86
52 User-level memory layout in Unix-like operating systems 91

List of Tables
1 Eigenstates of fermions according to the Standard Model 5
2 The known interactions and their gauge bosons 5
3 Some parameters of the LHC . 9
4 Some parameters of the TRD . 16
5 Sampling vs. Instrumenting Profiler 30
6 The performance of the main HLT TRD components 66

Listings
1 The core of the clusterizer . 43
2 Cluster and cluster-header exchanged between clusterizer and tracker

component . 52
3 XML configuration of the clusterizer component 55
4 Examples of memory allocation during run-time 92

REFERENCES 97

References
[AHI] S.R. Bablok et al. ALICE HLT interfaces and data organisation. Comput-

ing in High Energy Physics Conf. 2006 (CHEP06), Mumbai, India, 2006.
http://cdsweb.cern.ch/record/1066629

[ALE] S Bagnasco et al. AliEn: ALICE environment on the GRID. J. Phys.
Conf. Ser. 119 062012, 2008

[ATDR1] The ALICE Collaboration. Technical Design Report of the Trig-
ger Data Acquisition High-Level Trigger and Control System.
CERN–LHCC–2003–062 ALICE TDR 10 7 January 2004

[ATDR2] The ALICE Collaboration. Technical Design Report of the Transition Ra-
diation Detector. CERN /LHCC 2001-021 ALICE TDR 9 3 October 2001

[ATDR3] The ALICE Collaboration. Technical Design Report of the High Level
Trigger. ALICE TDR 10, CERN–LHCC–2003–062

[CER] CERN-Brochure-2009-003

[DEM] W. Demtröder. Experimentalphysik 3/4

[GAF] V. L. Ginzburg and I.M. Frank, Zh. Eksp. Teor. Fiz. 16 (1946) 15

[GAJ] P. Goldsmith and J.V. Jelley, Philosoph. Mag. 4 (1959) 836

[GSI] http://www-alice.gsi.de

[HIJ] M. Gyulassy and X.-N. Wang, LBL-34246, 1997.

[JPS] A. Andronic et al. Statistical Hadronization of Charm in Heavy-Ion Col-
lisions at SPS, RHIC and LHC. Phys. Lett. B571, 36 (2003)

[JSN] B.I. Abelev et al. Indications of Conical Emission of Charged Hadrons
at the BNL Relativistic Heavy Ion Collider. Phys. Rev. Lett. 102:052302,
2009

[KAL] P. Billoir and S. Qian Nucl. Instr. and Meth. A294 (1990), p. 219.

[KBK] K. Bethge. Kernphysik - Eine Einführung, 978-3540745662

[LHCDR] LHC Design Report
http://lhc.web.cern.ch/lhc/LHC-DesignReport.html

[LOS] J. Wagner et al. Lossless Data Compression for ALICE HLT - ALICE-
INT-2008-020 version 1.0

[LPE] A. Robbins. Linux Programming by Example: The Fundamentals, 978-
0131429642

[MRD] M. Richter, Doctroal Thesis, Development and Integration of on-line Data
Analysis for the ALICE Experiment

http://cdsweb.cern.ch/record/1066629
http://www-alice.gsi.de
http://lhc.web.cern.ch/lhc/LHC-DesignReport.html

98 REFERENCES

[OBS] O. Busch. Nucl. Instr. Meth. A 522 (2004) 45

[ORS] Oana Ristea. Study of the chemical freeze-out in nucleus-nucleus collisions
- Romanian Reports in Physics. Vol. 56, No 4, P. 659-666, 2004

[QGP1] Cheuk-Yin Wong. Signatures of Quark-Gluon Plasma Phase Transition in
High-Energy Nuclear Collisions. Nucl.Phys. A681 (2001) 22-33

[QGP2] J. Harris, B Müller. The Search for the Quark-Gluon Plasma. Annu. Rev.
Nucl. Part. Sci. 1996. 46:71–107

[QGP3] K. Yagi et al. Quark-Gluon Plasma. Cambridge University Press, 2005

[PDG] C. Amsler et al. (Particle Data Group). Phys. Lett. B667, 1 (2008) and
2009 partial update for the 2010 edition.

[PER] D. Perkins. Introduction to High Energy Physics

[PICA] D. Page. Practical Introduction to Computer Architecture, 978-1-84882-
255-9 / 978-1-84882-256-6

[PPR1] The ALICE Collaboration. Physics Performance Report, Volume I, J.
Phys G: Nucl. Part. Phys. 30 (2004) 1517

[RB] R. Bailhache. private contact

[SLI] F. Sauli. Principles of operation of multiwire proportional and drift cham-
bers. CERN Report 77-09, 1977.

[TAL] T. Alt. HLT Heavy-Ion Preparation at CERN 09/09/2010

[TPC] J. Berger et al. TPC data compression, Nucl. Instr. Meth. A 489 (2002)
421

[TUK] B. Povh, K. Rith, C. Scholz, F. Zetsche. Teilchen und Kerne, Eine Ein-
führung in die physikalischen Konzepte. Springer-Verlag, 1993.

[TSD] T. Steinbeck et at. A Software Data Transport Framework for Trigger
Applications on Clusters - CHEP03, La Jolla, Ca., USA, March 24-28,
2003

Danksagung
Zunächst möchte ich mich bei meinem Betreuer Prof. Dr. Harald Appelshäuser
bedanken, für die Möglichkeit an einem derart interessanten und hochaktuellem
Experiment teilhaben, und einen kleinen Teil beitragen zu können.

Ich bedanke mich bei Dr. Henner Büsching für die moralische und praktische Un-
terstützung bei Präsentationen und Berichten und das Lesen dieser Diplomarbeit.

Konstantin Antipin danke ich für die exzellente Einführung in das gesamte The-
mengebiet und seine Vorarbeit. Linux und Emacs möchte ich seitdem nicht mehr
missen.

Für die unglaublich schnellen Updates des SVN trunks und für seine Hilfe bei den
vielen Details des TRD Offline Codes bedanke ich mich bei Prof. Dr. Christoph
Blume.

Desweitern möchte ich mich bei Dr. Matthias Hartig bedanken, für seine Idee einen
schnellen Testrechner zu akquirieren, der in zügiger Art undWeise seine aufgetragene
Arbeit zu verrichten wusste.

Werner Amend danke ich für seine Unterstützung bei den Drucker- und Netzwerkprob-
lemen, aber auch für seine positive Art die einen einfach immer umstimmt.

Nicht zuletzt möchte ich meinen Arbeitszimmerkollegen Hermes León Vargas und
Jason Ulery für die hervorragende, aber trotzdem nie ablenkende Arbeitsatmosphäre
danken.

Bei Raphaelle Bailhache bedanke ich mich für ihre Hilfe bei der Implementierung
der Kalibrieung und für die Tests, die sie mit Jason unternommen hat.

Im allgemainen möchte ich der ganzen ALICE Kollaboration danken, für die Hilfes-
tellungen und das aufgebrachte Vertrauen.

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbständig ver-
fasst, keine anderen als die angegebenen Hilfsmittel verwendet und sämtliche Stel-
len, die benutzten Werken im Wortlaut oder dem Sinne nach entnommen sind, mit
Quellen- bzw. Herkunftsangaben kenntlich gemacht habe.

Frankfurt am Main, den 29. September 2010

Theodor B. Rascanu

	Preface
	Introduction
	The Pedigree of Particle Physics
	The Standard Model of Particle Physics
	The Quark Gluon Plasma
	The Large Hadron Collider
	A Large Ion Collider Experiment (ALICE)
	ALICE-Detectors
	ECS Control
	ALICE-Software
	HLT Software Trigger

	The Transition Radiation Detector
	Working Principles of the TRD

	Triggers
	Hardware triggers (L0, L1, L2)
	High Level Trigger
	HLT-DAQ interface
	Event Processing
	Physical Layout
	Data Transportation Framework
	Modular Data Processing
	ECS-HLT Interface

	The Development of HLT::TRD
	About Profiling
	Test Setup
	Offline Reconstruction
	Raw Reader
	Cluster Finder
	Track Finder

	Online Reconstruction
	Data Exchange between Components
	Reconstruction Components
	Monitoring Components
	Histogram Merging Component
	Calibration Components
	Trigger Components
	Component Placement
	Offline Compatibility Components
	Summary of the Components Developed

	Quality Assurance
	Pre-requirements
	QA based on Simulated Data
	QA based on real data

	Summary
	Appendix
	Memory Management on Modern Computers
	Static and Dynamic Memory Allocation
	Data Alignment
	Virtual Memory
	Inter-Process Communication

	List of Figures
	List of Tables
	Listings
	References

